

Software
Verification and Validation

An Engineering and Scientific Approach

Software
Verification and Validation

An Engineering and Scientific Approach

by

Marcus S. Fisher
USA

Springer

Marcus S. Fisher
USA
Marcus.S.Fisher@nasa.gov

Library of Congress Control Number:

Software Verification and Validation: An Engineering and Scientific Approach
by Marcus S. Fisher

ISBN-10: 0-387-32725-8
ISBN-13: 978-0-387-32725-9
e-ISBN-10: 0-387-47939-2
e-ISBN-13: 978-0-387-47939-2

Printed on acid-free paper.

© 2007 Springer Science+Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or
in part without the written permission of the publisher (Springer
Science+Business Media, LLC, 233 Spring Street, New York, NY 10013,
USA), except for brief excerpts in connection with reviews or scholarly
analysis. Use in connection with any form of information storage and
retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now know or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and
similar terms, even if the are not identified as such, is not to be taken as
an expression of opinion as to whether or not they are subject to
proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1

springer.com

Contents

Chapter 1: Introduction 1

Chapter 2: Managing Verification and Validation 7
Section 2.1 The Axioms of Leadership 8
Section 2.2 Planning 20

Section 2.2.1 Establishing the V&V Requirements 21
Section 2.2.2 Establishing the V&V Plan 47

Section 2.3 Managing the Plan 54
Section 2.3.2 Effectiveness Measures 57
Section 2.3.3 Control Gates 66

Section 2.4 Risk Management 68
Section 2.4.1 Identify 71
Section 2.4.2 Analyze 72
Section 2.4.3 Plan 74
Section 2.4.4 Track 76
Section 2.4.5 Control 77
Section 2.4.6 Risk Management Plan 77

Section 2.5 Communication Structures 78
References 83

Chapter 3: The Verification and VaUdation Life Cycle 85
Section 3.1 Traceability Analysis 89
Section 3.2 Interface Analysis 106
Section 3.3 Phase Dependent Analysis 121

Section 3.3.1 Requirements Analysis 124
Section 3.3.2 Design Analysis 133
Section 3.3.3 Code Analysis 135
Section 3.3.4 Test Analysis 139

Section 3.4. V&V Testing 144
References 154

Chapter 4: Systems V&V 155

Appendix A 163

Index 171

Preface

The World is lacking an in-depth technical book describing the meth­
ods and techniques used to provide confidence in our system software.
Not only is the U.S. government more focused on software safety in to­
day's market, but private industry and academia are as well. The methods
and techniques that provide such confidence are commonly called software
verification and validation.

Software Verification and Validation: An Engineering and Scientific
Approach, a professional book, fills the critical need for an in-depth tech­
nical reference providing the methods and techniques for building and
maintaining confidence in many varieties of system software. The intent of
this volume is to help develop reliable answers to such critical questions
as:

1) Are we building the right software for the need?
2) Are we building the software right?

Software Verification and Validation: An Engineering and Scientific
Approach is structured for research scientists and practitioners in industry.
This book is also suitable as a secondary textbook for advanced-level stu­
dents in computer science and engineering.

Acknowledgments

As with most work, what starts as a simple idea in the mind of the au­
thor leads to a most grueling endeavor for those around him. To those that
have been directly affected by this work and have supported me I am
thankful. To my parents, Jim and Marsha, for they instilled in me the
dedication to see this through and were the first to teach me leadership. To
my wife, Hailie, who had to incessantly endure my early morning petu­
lance that resulted from so many late nights on the computer. To her I am
grateful for her support, patience, and love during this endeavor. To my
future, who has yet to see the light of day but I hope that some day I can
give back what has been given to me, opportunities.

Chapter 1: Introduction

Professor Van Lickman desperately calculated his options, he contem­
plated what could have gone wrong, how could he fix it and how long was
it going to take? He knew that he didn't have much time; the launch pack­
age was about to cut away the helium balloon that was to carry it to an alti­
tude of 100,000 feet. This was the triggering mechanism for igniting the
engines of the model rocket on board the launch package. The rocket was
the second stage for this mission that was to prove that off the shelf tech­
nology could be used to achieve a low Earth orbit (LEO). Once in orbit,
the rocket would autonomously assemble various pieces of hardware that
were launched using the same approach. Final assembly would yield a
fully assembled spacecraft in LEO that would conduct atmospheric studies
of the Earth. The approach had never been tried; recent studies had re­
vealed that fluctuations in Earth's gravity could allow for common tech­
nologies to escape the pull of the Earth. That was not on the professor's
mind right now, he needed to understand why the vehicle was about to
prematurely cut away the helium balloon prior to achieving 100,000 feet.
What could have gone wrong?

The Team in the control center worked feverishly, telemetry from the
launch package indicated that it was ascending at a rate of 1,000 feet per
minute and it was at an altitude of 96,000 feet. The mission was going
well up until the last telemetry reading, which showed that the launch
package's altitude was 95,990 feet and the onboard computer was about to
execute the stored commanding sequence for premature descent. Was the
altitude reading wrong or was it accurate? It would take another minute
before the next sequence of data was to be sent to the control center and
the computer would have executed the abort sequence by then. Without
taking action soon, the computer was going to abort the mission. If the
professor interrupted the abort sequence and the launch package was de­
scending, it could create a small crater in the Earth at that rate or worse if it
was to impact an occupied house. For a premature descent the computer
was to cutaway the helium-filled balloon and deploy the rescue parachute
in order to slow the rate of descent.

In the end, the professor did not interrupt the abort sequence, the bal­
loon's rate of descent was slowed by the safety parachute and the vehicle

2 Chapter 1

was recovered. No one was injured except for the professor's reputation as
well as his bank account. The funding entity for his studies lost confi­
dence in the professor and decided not to fund any more experiments. Af­
ter recovering the launch package and studying all the stored data, pictures
from the onboard camera showed that the helium balloon did not fail.
How can the balloon still provide lift in the presence of altitude readings
indicating the launch package was descending? The professor learned that
the last telemetry reading was accurate; the balloon had experienced some­
thing that for a brief period of time lowered the altitude by 10 feet. It
seemed possible that if there were winds at that altitude they could put the
balloon on a horizontal trajectory resulting in the altitude not increasing. If
there was a pressure differential at that point in the flight path the launch
package could have experienced a momentary drop in altitude. What trou­
bled the professor was that he performed a trade study regarding the ascent
rate and how the launch package was to verify it was actually descending.
He concluded that he wanted the software to take an altitude reading every
minute and if it was less than the last reading then it was to verify on the
next reading that it was actually descending. He felt he had accounted for
this phenomenon. After careful examination of the software he found that
the source code's conditional statement used the assignment operator in­
stead of the equality operator to check for successive readings. As a result
no matter what the second altitude reading was, the computer was going to
abort the mission. A simple coding error caused him and his team to abort
a perfectly good mission.

This is not the desired outcome when operating critical system software.
Software that deviates from its expected behavior is not an option when it
comes to building safety-critical system software. As such, the professor
needed to intelligently employ state-of-the-art tools and methods for assur­
ing his system would not fail during flight. "Of course you have to" you
say, every engineer needs to assure that their system will not fail. How­
ever, there are various approaches and levels of assurance one can employ
and achieve respectively.

System software, like the professors', is an entity that can be observed
and studied throughout its entire life, much like biological organisms or
natural phenomenon. I'm not just talking about a software system that is
deployed and running. Even as the system is being developed, one can
study and observe it. But why on Earth would we want to study and ob­
serve a software system. Is it something magical or is it going to give us
some deeper explanation for the Universe, or is it going to explain the one
true use of the googolplex? Let's just simplify matters and ask "How do
you know that the software system is going to do what you had intended it
to do?" Test it you say, that is certainly part of the answer but I will argue

Software Verification and Validation

that it is not a complete answer. How do you know that you have tested it
under the conditions in which it will experience during operations? By the
way I'm not suggesting that I have the silver bullet but I am suggesting
that we have a solution that compliments the engineering activities that are
performed during development.

To achieve the necessary levels of assurance, engineers have a few op­
tions. One of these options is that they can run, in parallel with develop­
ment, a Verification and Validation (V&V) project. V&V is an engineer­
ing practice that provides confidence that the system software was built
adequately and will meet the needs of the system. A commonly used defi­
nition for V«&V is that it is a systems engineering practice that employs
methods such as reviews, static and dynamic analysis, testing and formal
methods to provide assurance that software artifacts within a certain phase
of their life-cycle conform to their requirements and expected operational
behavior.

In this book I present a concept that deviates slightly from the com­
monly used definition. I guess you could say I add a dimension to the
V&V concept. In the commonly used definition we state "...provide as­
surance that software artifacts within a certain phase of their life-cycle
conform to their requirements and expected operational behavior." I intro­
duce the concept for a systems focused V&V effort. The systems ap­
proach goes beyond the individual phases of the life-cycle. It encapsulates
the results from all of the phases to make concluding remarks about the
system, not just its individual phases. It suggests that V&V is not com­
plete until it integrates the results that conclude each phase. The integrated
conclusion represents the system as a whole, not a conclusion for each
separate phase of the development life-cycle. For the professor, it wasn't
enough to do just the trade study. His concern needed to be followed
through each life-cycle phase (i.e. verified the code did what he wanted it
to do).

A softw^are system evolves through a process that we traditionally call a
life-cycle. It begins with a definition that describes what behavior it is
suppose to have. A solution is then created that is supposed to reflect that
behavior. This solution is then built and tested against the initial behav­
ioral description. If it passes then it gets deployed, if it doesn't then it gets
reworked until it does pass. Artifacts are the byproduct of this evolution.
These artifacts represent the system at particular stages of its life. Re­
quirements represent the behavior, designs represent the solution, source
code represents the implementation, and tests represent the qualifying ar­
gument for deployment.

V&V is itself a process and has a life-cycle of its own. The V&V life-
cycle is ran in parallel with the developers. For example, as the behavior

4 Chapter 1

is defined and its byproduct generated (e.g. requirements specification)
V&V will perform requirements analysis. Based on their assessment V&V
will gain an understanding of the system's behavior, will generate specific
facts regarding the quality of the requirements, and may generate issues
with the documented requirements. Figure 1.1 depicts the life-cycle that
V&V traditionally follows. The figure shows the relationships with the
software engineering life-cycle.

Software Engintering
Ufe-Cyd»

RBqulwments

Oaslgn Phas«

imftemtnlattort
Phaw

Test Phase

Vefificatoft I . Validation Lifc-Cycte

Reqylrenwnts
Ph8S»

^ Dosiflo Phase

Implementation
Phase

Test PhaBB

-9^ Tfaceability Analysis ')

-*^ Interface Aniilysis)

-»-(Requiremenis Ar.alysls)

- • - (' Traceabilily Analysis ^

-»•(Interface Analysis }

-%•{ ^Design Analysis)

--t»^ffaceabiiHy Analysis ^

-»»(Interlace Analysis)

-m-(^ Coile Analysis j

- * / " Tfaceability Analysis 1

- • / Interface Analysis ^

- • ^ Tsst Analysis ")

Fig. 1.1. Traditional life-cycle that a verification and validation (V&V) project
will follow. During development, the software evolves through a life-cycle and
the V&V project is ran in parallel.

During the life-cycle V&V conducts focused assessments to assure the
right behavior is being built into the system. For example, the V&V team
performs traceability analysis, interface analysis, and requirements analy­
sis while the development team documents the software requirements.

Software Verification and Validation

These analyses are complimentary to the developers. V&V can develop an
executable model of the software requirements to be used for their assess­
ments. This additional level of rigor allows the V&V team to assess the
requirements from different perspectives than the developers. Develop­
ment is very focused on engineering the system and proving the system
works where V&V explores the various combinations of behavior to show
where the system fails. These techniques are what reveal missing func­
tionality or ftinctionality that does not meet the needs of the end user. It is
extremely important to discover issues such as these early on in the life-
cycle.

Any member of a V&V team or any stakeholder to a V&V project can
benefit from this book. They will be able to use this book as a guide when
planning, studying or implementing any engineering activity that involves
assuring the software behaves as intended. This is not to be taken lightly,
a lot of times these practices are overlooked or administered at too high a
level to provide any benefit. This book intends to remedy that. This book
intends to provide the technical approaches for managers and practitioners
so that they not only gain the necessary understanding; they have the de­
tailed steps necessary to achieve their challenging assignments.

There is no cookie-cutter approach for validating that a software system
will not fail when orbiting the Earth. However, I lay the framework from
which you can begin. I suggest that there are fifteen system-level V&V
requirements that must be fulfilled by every V&V effort. It is not a
cookie-cutter so to speak simply because the approaches that can be taken
to fulfill these requirements can vary. This book introduces the common
approaches as well as the objectives that are achieved when performing
V&V on system software.

I also want to add that this book is not intended to be a one stop shop for
V&V tools. There are too many tools and methods that exist for me to
summarize each one of them. I even think that I shouldn't do that. Come
tomorrow morning there will be another tool on the market or another tool
in the research lab that claims its superiority. So what do I do in this book
if I don't present the specific tools? The intent is to provide a baseline for
everyone performing V&V. To date there has not been a clear description
of what V&V actually achieves when they work on a software project.
Most descriptions use terms such as correctness, completeness, and read­
ability without clearly explaining what these terms mean. I want to clear
that up. I also want to provide a framework that enables ftiture work to
explore and advance the methods and approaches one can take in perform­
ing V&V.

The baseline that I wish to establish is to define exactly what V&V has
to achieve as well as the level of rigor needed to be realized in their results.

6 Chapter 1

In Chapter 2 I present the management approaches and in Chapter 3 I pre­
sent the life-cycle that V&V normally follows. Here is where I present the
level of rigor as well as the specifics regarding what it is V&V achieves.
Chapter 4 is the concluding chapter that summarizes the key topics in the
book as well as the concept for systems V&V.

Basically there will be three types of responses to the concepts I intro­
duce within. Some will totally ignore them and think that I've lost my
mind. Some will be intrigued by the concepts but will forget about them
when they close the book. Others will digest the concepts and in some
fashion try to make some or all of them reality. I am trying to reach the
latter group of people. I bring this up because these concepts are some­
thing that I strongly believe in and I have seen them work in practice. One
of the underlying problems that exist is that there are numerous meanings
to what V&V is. This is one of the reasons why I wrote this book, I be­
lieve that we need to first agree on the core principles and then we can
evolve from there. My ultimate goal is to have something that benefits the
verification and validation of system software; I am not looking to just de­
velop pages that will later sit on the shelves in my library.

Read these chapters, take notes, and challenge the very ideas that I pre­
sent. We can not advance anything without challenging the concepts at
hand. Concepts that I believe are in their infancy state of scientific struc­
ture. Together we can build a theoretical concept for what it truly means
to verify and validate a software system.

Chapter 2: Managing Verification and Validation

Even though this book is focused on conveying information to engineers
and scientists, I have to include a chapter on management. I have learned
from my experiences that the project can not experience success unless
management and subject matter experts (SMEs) work together. Numerous
times I have fielded questions from the engineers in the trenches like
"Why in the world does management want to know that?" It would be
much simpler if management only communicated better. It would be just
as simple if the engineers in the field fully understood and appreciated ex­
actly what it took to lead a project in its entirety. The data that manage­
ment uses to develop plans and control the project comes from the SMEs,
as such they should fully understand or at least have an idea as to how that
data is going to be used. That is why I have included a chapter on man­
agement.

A successful Verification and Validation (V&V) project can not be real­
ized unless you have a solid management approach. One aspect of man­
agement that first needs to be discussed is leadership. It is essential that
you have within your group a few solid leaders with disjoint responsibili­
ties. Your leaders may be your management or may be the junior engineer
sitting in the cubicle next to you. Nonetheless, you must be able to recog­
nize her or recognize that it is you and ensure the leadership axioms dis­
cussed in the next section are adequately followed on your project. With
these axioms comes success, without them comes failure and we all know
that failure is not an option.

Leadership is not the only management approach needed for a success­
ful V&V project. This chapter first discusses leadership and the axioms
that must be followed if you want to be a successful leader. Section 2.2
discusses the planning approaches that are used to plan a V&V project.
This includes establishing the V&V requirements, the scope of the system
to be verified and validated, and developing the plan. Section 2.3 dis­
cusses managing the project according to the established plan. A complete
set of techniques is not introduced simply because this text is not solely
about management. Instead I chose to introduce just a few management
techniques that I feel must be used and followed to assure the project
meets its expectations within +10% and -5% of the established plans. Sec-

8 Chapter 2

tion 2.4 discusses risk management and section 2.5 introduces the three
types of organizational models that a V&V team can employ.

Section 2.1 The Axioms of Leadership

It occurred to me one day while I was attending a design review for a
mission that was to travel to low Earth orbit and study the chemical
makeup of the Earth's atmosphere, that the people running the review, and
held formal titles, were not the actual leaders of the review or of the design
team. Granted, I was a naive young scientist at the time that thought enti­
tlement (e.g. management) brought you control of the engineering of a sys­
tem. Man was I misled! The Systems Engineer for the mission was
clearly the leader. He commanded a certain respect from the design team
and his opinion was not only sought after by the management team, it was
quickly agreed to. It was interesting to watch the individuals in the room
change the very opinions that they were so vigorously arguing for, when
he spoke up. The beautiful thing about it was that he never commanded
anything, literarily. He knew how to listen, understand the problem that
was being discussed, process the data that individuals presented, and make
an informed decision. After awhile, I became one of those individuals that
looked at him as the leader. From that point forward, I cautiously ob­
served the dynamics of engineering teams in an attempt to figure out, if
you don't have the formal title, how can you control everything that goes
on? The biggest thing I have learned is that you should not learn how to
control; you should learn how to influence!

The objective for this section is to introduce, what I have learned and
have practiced myself, the structure, as well as the concepts that all leaders
must be familiar with and follow. Leading a group of individuals can be
the most complicated engineering task known to humans. However, the
foundation for leading is quite simple. Here are the five axioms that you,
as a leader, must practice:

• Establish and maintain the problem your team must solve.
• Establish and maintain your environment and organizational structure.
• Establish and maintain how and when your team needs to solve the

problem.
• Know your team as you know thyself
• Establish and maintain a consistent strategy for communication.

Software Verification and Validation

Establish and maintain the problem your team must solve

A clearly stated problem that is unambiguous to everyone will produce
realistic plans that all team members understand and can follow. The re­
maining chapters will address the specific problems that a V&V team is
trying to solve. The point I'm trying to make in this section is that leaders
must ensure that the teams understand what the problems are. It sounds
simple, how hard is it to state what the problems are? I challenge you to
look at past V&V projects, or the project that you are currently on, and
point out the problems that the teams are trying to solve. Don't get me
wrong, I'm sure you can generate the problems your team is currently off
solving. The underlying challenge is to identify the problems that were es­
tablished and used to drive the goals, objectives, plans, and approach
taken by your team.

When you think you have spent too much time in clarifying and stating
the problem you must solve, then you need to spend some more. This may
not be an easy task and may require a significant amount of effort by doing
research, conducting interviews, and surveying the market. Effort needs to
be expended to assure that all stakeholders and team members^ understand
the overall problem that will be solved when the project has met its objec­
tives and goals.

Let's first consider a counter example to my assertion that the problem
must be clearly stated and understood. A team can put a plan in place, im­
plement the plan, and report on their findings easy enough. They may
have even been considered successful. However, I imagine that these
counter examples never experienced multiple stakeholders, changing envi­
ronments, or solved a complex problem. First and foremost, I have learned
that it is advantageous for all team members to understand why they are
doing what it is they are doing and what their work actually means to the
greater cause. Having said that, I'm not implying that you need to have
philosophical discussions, group hugs, or bring in the softer sciences so
that all team members can get a grip on why they exist. What this means
is to simply put the work that is about to be performed into context as well
as have it drive the team's plans and tasks.

Here is a simple example. Suppose my goal is to be at the Pittsburgh
Airport by noon on January 16. Knowing this goal, I establish the follow­
ing objectives:

^ Some team members may not realize that they are stakeholders. This is one of
the challenges that leaders have and that is making the team aware of why the
problem is important, why they should care, and how they fit into the overall so­
lution

10 Chapter 2

• To secure reliable transportation on January 16
• To define a reliable path of travel that is responsive to road conditions
• To arrive at my destination one hour before 12:00 P.M. on January 16

After establishing these objectives, I choose to brainstorm and develop
the actions that will be needed to achieve these objectives. These actions
will also be incorporated in an overall plan to be followed, however, at this
time I chose to brainstorm and get a sense for what I may have to imple­
ment. My actions are as follows:

• Secure a rental vehicle for January 15 through January 16.
• Fuel and inspect the rental vehicle on January 15.
• Obtain road-side assistance and determine their average response time.
• Determine the shortest path of travel to Pittsburgh Airport.
• Determine the reliable paths of travel to Pittsburgh Airport taking into

consideration traffic, road construction, and possible speeds of travel on
January 16.

• Develop the path of travel using the shortest path and reliable paths.
• Develop a time schedule taking into consideration the chosen path as

well as having to respond to one failure of the vehicle and one deviation
from the established path in order to arrive one hour before 12:00 P.M.

• Establish checkpoints along the path of travel that can be used to
manage the trip to Pittsburgh Airport.

After identifying these high-level actions, I put a plan in place and exe­
cute it. Upon completion and on January 16*̂ I drive to the Pittsburgh air­
port. The vehicle does not experience any problems and I don't get lost.
As such, I arrive at 10:00 A.M. I have met my goal and I am successful.
Upon arrival, I realize the reason that I was to arrive at least by 11:00 A.M.
was because I was picking up my wife and her parents that were flying in
from Washington D.C. and driving them back to our house. She wanted
me there early so that I could meet them to help with their luggage and in
case the plane was early. Unfortunately, the vehicle that I rented was a
sports car and could only hold two people. This forced me to either put
her parents back on the plane, not that I was advocating that nor seeded
this fault, or rent another vehicle to accommodate the four of us.

Even though this was an extremely simple example and deemed suc­
cessful (I arrived at 10:00 A.M.), I am still hearing the disappointment
from my wife. I am using this simple example to help explain the impor­
tance of understanding the problem and toy examples are good candidates
for non-technical explanations. First, in understanding the problem I could
have realized why I was going to the Pittsburgh Airport. Even though the
goal was very clear, it could be argued that it was not complete. By simply

Software Verification and Validation 11

understanding why I needed to achieve this goal I could have alleviated the
ultimate problem I was faced with. Second, this information could have
been used when planning my tasks. In doing so, I would have realized that
I needed a vehicle that could accommodate at least four people with lug­
gage. Lastly, even though I claim success, all the stakeholders did not!

The assertions that I am making are that the problem must be clearly
understood and stated in order to establish an accurate goal. Also, a
clearly understood and stated problem drives the subsequent objectives and
tasks that need to be implemented. A clearly understood and stated prob­
lem is essential to manage the changes the project is surely going to ex­
perience. And lastly, a clearly understood and stated problem helps the
team realize when their solution has met the needs of the system and
stakeholders.

As stated before, effort needs to be expended up front to understand the
problem and it may not be an easy task. As the leader, make sure you ob­
tain the viewpoint of all stakeholders. Ensure you understand their per­
spective and what it is they think they want your team to solve. The leader
must look beyond the individual tasks and solutions and understand these
perspectives and needs because these are the people that may use the sys­
tem, allocate resources, or are simply in charge. Constantly and consis­
tently keep all stakeholders informed of the problem you are solving and
maintain its integrity. When recommended changes surface then manage
them by clearly stating that changes can occur but we must assess the im­
pact of implementing the change and whether or not it will compromise
the original problem definition. Then and only then can you determine
how your approach must change.

Let me make a side note at this point since we are talking about dealing
with several types of people. You may not be able to obtain concurrence
from all individuals. This presents a very unique challenge. If the one dif­
fering opinion happens to belong to your boss then do you say she's right
and everyone else must be wrong? How do you handle this for the sake of
the team? I can only offer up this advice. Recognize situations where
you're not going to win. I know the old cliche, "We don't fight the fights
we can win, we fight the fights worth fighting". To me, that is a personal
objective and not one you should have your team feel the retributions of if
you take them down that path. Instead of leading your team in fighting a
doomed struggle, lead your team towards challenges they have a chance of
achieving. What this means is that when conflicts arise, it is your respon­
sibility to be able to identify how to resolve them. Actually what I really
want to say is, to achieve ultimate leadership, you must be able to antici­
pate these conflicts before they ever present themselves. Don't leave this
paragraph thinking that you should stifle engineers on your team simply

12 Chapter 2

because they are arguing with the boss and the boss is always right. What
this means is, as a leader, you should see this coming and instead of engag­
ing your team into conflict with your boss, attack it at a different angle.
That is where strategy comes into play, and if you haven't read the book
"The Art of War" by Sun-tzu, then I suggest you put that on your "to do "
list. "Ultimate excellence lies not in winning every battle but in defeating
the enemy without ever fighting."(Minford 2002)

In defining the problem, always make sure there is a realistic problem
that is driving your project. Engineers can be creative; they can easily de­
velop a problem definition even in the absence of a real problem. Time
and time again I have seen teams that are building capabilities to only ex­
perience pushback, resource constraints, and vague objectives. If you find
your self leading a team that is not solving a real problem but building a
capability, then you better get training in marketing because you are going
to have to sell the hell out of your proposed solution, even though your so­
lution is not really solving anything. You will spend the majority of your
time searching for places to use your solution and trying to get others to
buy-in to it. Simply put, if you find yourself leading a team that is trying
to solve a clearly stated problem that the entire organization and stake­
holders understand then you have a recipe for success.

So up until now you are fairly confident that you can state clearly what
the problem is that you must solve, unfortunately just stating the problem
is not enough. A clearly defined problem statement is not enough to guar­
antee success, it must be useable. To make it useable, I find it efficient to
accompany the problem and maybe even characterize it by defining what
the V&V team wants to achieve, a goal and objectives. Defining this is es­
sential! Let me say that again, defining what it is you want to achieve is
essential. Realistic goals will not only help the team identify potential
risks, they are essential for establishing realistic plans and approaches to
solving the problems at hand. It shall be very clear, communicated to all
stakeholders and above all, stated up front before the project begins. The
more precise you can be in identifying the problem, the more your team
can focus on the right solution.

A V&V team never wants to perform just analysis on development arti­
facts. It must achieve something and not something that is stated for the
first time after the fact. For example, a V&V project that performs test
analysis on the developer's test cases shall not, after the task is complete,
say that it performed test analysis on test cases and found jc number of is­
sues. BEFORE test analysis is even started, the goals and objectives must
be stated, among other things, planned for and managed. How else would
you know when the task is complete? I have seen too many projects that
perform analysis on artifacts and quit when they have looked at the last

Software Verification and Validation 13

element of the artifact. That is not an adequate exit criteria and that is un­
acceptable. If you are ever presented this scenario, as the leader you need
to recognize that your project will never achieve anything. Recognize this
risk and mitigate it!

That is not to say that as a discipline, V&V tasks need to have different
goals and objectives for different development Projects. What you want to
achieve can be the same for similar artifacts and/or tasks. The important
thing is that it is stated up-front, plans are put in place to achieve those ob­
jectives and leaders get the team on course and towards those ends. How
you implement your approach is what may vary. Then and only then can
you lead your team to success.

Now that you have led your team towards ensuring they have a clearly
stated problem as well as goals and objectives, it's time to start planning.
As a leader, one thing you must keep aware of is whether or not your team
has planned enough. Keep in mind; it is not possible to plan a completely
risk-free project. There are too many unknowns, too many variables and
one of the most common errors is the over analysis of information. Wait­
ing for a solution that has no risk is a nice way to avoid doing anything. It
takes leadership and engineering judgment to know when to stop planning
and when to take action.

Planning is not a task that is scheduled and identified in a Gantt chart as
a one time event! You shall not treat planning that merely gets a check in
the box once a formal plan gets developed. Planning is continuous; plan­
ning is establishing an adequate approach to solving a problem. If you
think that your solution will follow a smooth path and will never deviate
from the plans established, then you as the leader either need to quit being
the leader or you need to do something about it. Your solution will evolve
over the life of the project and your team and plans must evolve with it in
order to be successful.

As the leader you need to constantly worry about what may or may not
happen. I'm sorry to report that even though V&V teams perform this
very well against the projects they are assessing, they do it poorly against
their own project. Not enough time is spent in identifying what could go
wrong. As a V&V discipline we don't do this enough. You can call this
risk management or you could just call it planning using "what if scenar­
ios". Whatever you choose to call it, just call it something and do it! Keep
in mind, a V&V team is not successful because everything goes as
planned, they are successful because they can react and are ready when
things go wrong.

14 Chapter 2

Establish and maintain your environment and organizational structure

It is your responsibility to maintain the organizations integrity. The
leaders are the only ones that can adversely affect it. Even though every
engineer on the V&V team comes to you for guidance, opinion, or just to
blow off steam, it is your responsibility to identify when the chain of
command is more appropriate. Once that is broken then you will be lead­
ing a band of pirates that do not have the thrust and support of the organi­
zation. You might be the most liked person on the team because you ig­
nore management but you will lose the power to influence.

Simple discussions to allow team members to blow off steam are excel­
lent, it is even better if the team comes to you for technical advice. When
it comes to team members coming to you because they have a problem
with a supervisor, another team member or they want to take an action that
is surely going to disappoint management then that is when you have to
dawn your coaching hat. As an effective leader you need to then coach the
team members, teach them how to approach their team members, supervi­
sors or management. Teach them that they have to exercise the chain of
command and emphasize that you will help. You will not only help them
but you will maintain that very structure that is needed to produce the final
system. Whatever the problem, coach your team to take a route often less
traveled by them. More than likely they will have to deviate from their
engineering attitude and dawn a more appreciative one. Whether it is a re­
quest or they want the team to take a new technical direction, coach them
in the following ways:

• Have them understand and gain an appreciation for management's point
of view.

• Understand what management is concerned about.
• Identify the weaknesses in your team's point of view and prepare

strategies to strengthen them (you don't have to have them strengthened
by the time you approach management, but you'll be able to show that
you have plans in place).

• Build discussion paths that will be used to keep the discussion focused.
Don't let tangential discussions lead you to not solving the problem that
you originally came to discuss. Building discussion paths lets you
anticipate where discussions may go awry.

• Develop your argument or request by integrating management's point of
view into it as well as introduce the things that they may be concerned
about. It shows that you have thought through your argument and are
ready to move on it.

Software Verification and Validation 15

• Build in a few minor problems into your argument or request. Allow
management to easily identify them so that they feel they have
contributed and it keeps them from getting tangled up in the details in
trying to find problems.

• Lastly, approach them professionally. Take all their ideas as serious
ones and make it a point to incorporate all suggestions. That can simply
mean that you will go off and explore an idea a little more or it means
that it can be easily integrated into your request.

Whether your team member is approaching management or other team
members, the ideas listed above are applicable. This will not only main­
tain a strong organization it will indirectly build your team members pro­
fessionally. Without a doubt they are excellent engineers, but they may
lack the charisma needed to influence others. This is where you, as the
leader, can be an effective coach.

Your organization and the environment you are working in must not be­
come stagnant. Even though that is a comfortable environment, for only a
short period of time, it will lead to total failure. Your environment must be
able to accept change and the advancement in technology that is always
occurring. That does not mean that your environment must be an em­
bodiment of chaos at all times, it simply means that you must anticipate
chaos, you must expect change, and most of all you must establish an envi­
ronment that can not only function in its presence, it accepts it with open
arms.

An effective mechanism to put in place is an advanced technology ca­
pability that is focused on an aggressive tools and technologies develop­
ment process. This process should continually update standard operating
procedures, produce new platforms, and extend training into new and di­
verse areas. To do this may require extra work on your part. But once you
do it the first time and have data that supports it take it to management.
Together you will discover that a culture that emphasizes the need to ag­
gressively search for and test new solutions effectively and easily allows
the projects to respond to changes as well as unforeseen problems.

Establish and maintain how and when your team needs to solve the
problem

I have seen V&V teams function time and time again without using
knowledge of what worked before. I am guilty of this as well. I have
learned that it is essential to incorporate previous successes as well as fail­
ures. Domain experts certainly bring this knowledge to the table indi-

16 Chapter 2

rectly, but you take the chance and are gambling that your grey beards will
effectively incorporate the best practices of the past.

Essentially what I'm referring to are best practices. As a leader, you
must ensure that best practices are documented after tasks are completed.
It is not enough to only document these best practices. They must be used!
These practices must be employed when formulating plans and approaches
and as a leader, you must hold the team accountable for showing that these
practices are actually being used.

Using best practices is extremely important to solving your current
problem. But best practices alone will not maintain the integrity of the so­
lution. Sometimes engineers and scientists lose focus of the overall goal
and objectives. They can be the most creative people I've met and when
they get on a problem or a solution it is nearly impossible to change their
course. That is why you must keep them focused on solving the problem
at hand. They can easily get off on tangential solutions that may be cool,
but do nothing in meeting the overall goals and objectives. You can't sti­
fle them by telling them that the problem they are investigating is useless
but if the problem they are working on does not lead to a solution to the
one established at the beginning of the project then you better get a handle
on it.

I once worked with an engineering team and one of our tasks were to
verify that all commands from a spacecraft's master command database,
was being executed by the developer's test procedures. It was a fairly
straightforward problem but it soon developed into an unmanageable one.
I was under the impression that the team was off tracking commands and
the parameters being passed to each, when during our weekly tag-up I re­
ceived status that surprised me. The team reported that they had acquired
actual operational logs that identified the commands that had been exe­
cuted by a spacecraft our project was inheriting its' software from. Using
the command logs, they were going to develop a graph that depicted which
software tasks were spawned as a result of each command being issued.
Using that, the team would be able to identify which "pieces" of the soft­
ware have actually been exercised on orbit. Their logic was to determine
which commands had the most impact on the system software and hence
which aspects of the system should be exercised more frequently by the
test procedures. This had all transpired within one week's worth of time.
Needless to say I had two major comments. First, I thought that would be
cool as hell if we could provide that kind of capability and second, I
thought I was going to strangle my team of highly qualified engineers.
They had totally lost focus of the task at hand. I had to suppress my inner
satisfaction for being impressed with their idea in order to get them back
on the original problem. However, to do so was a challenge. Never and I

Software Verification and Validation 17

mean never, tell an engineer that they shouldn't be doing something,
unless it is illegal. What I mean, is that we are explorers by nature and in­
telligent minds are hard to manage. Instead of telling them to quit what
they were doing and that we had no use for it I worked with them by con­
tinuously talking about the original problem "verifying that all commands
from the spacecraft's master command database, was being executed by
the developer's test procedures" and how their solution was going to give
that to us in the time-frame identified. Even though they couldn't answer,
they were still elated with the new approach that they had just developed.
I had to agree that it was a great approach, but just not for the problem that
we were suppose to be solving. I negotiated with them, I got them back on
track in solving the original problem and I secured a few extra dollars to
do a research project that allowed them to explore their new found ideas.

You could say I caved in and instead I should have commanded them to
stop what they were doing and get back on the original task, but then I
would have run the risk that their engineering minds would have become
stale. In the end, I now take into consideration a few things before I get
started on a project. First, when putting plans together I assess each of the
tasks and the problem being solved. Things that I'm looking for are ways
those eager engineering minds might stray from the objectives during im­
plementation. I use this information to help me decide the type of com­
munication that is needed within the team. I may use a weekly meeting
that all team members must attend, instead of just the leads. This allows
me to get a good feel for what is actually going on in the project instead of
hearing it second hand. Another very effective technique is to institution­
alize an environment that accepts all new ideas and supports them. Advo­
cate to the team that we seek to do things that are innovative but we must
manage the risk that is inherent with innovation. Keep focused on the
original problem but let the team know that they can come to you with new
ideas for doing things and there is a possibility for implementing new ap­
proaches. This maintains their explorative nature as well as it keeps you
informed where the team may be straying.

Know your team as you know thyself

Practitioners of V&V need to first learn by doing, we must be equally
knowledgeable as the designers of the system that we are performing V&V
on. If you are leading a V&V team that has not experienced the dynamics
of engineering a system or can not appreciate and understand what it takes
to build a system, then you have no chance of succeeding. Having a team
that is technically competent is one thing, maintaining that technical com­
petency is another. Institutionalize a rigorous training program that allows

18 Chapter 2

your team to constantly stay abreast of the engineering advancements go­
ing on around them and advocate a mentality that we are the "Best of the
best!"

A slogan like "Best of the best!" is useless if it is simply printed to a
plaque and mounted to a wall to collect dust. You have to lead your team
from in front, put yourself on the frontline and show them the type of be­
haviors that are characteristic for being the best. To do this means you
must also be as knowledgeable as your team, you must be an expert in the
discipline. This will gain their respect and will better enable you to effec­
tively lead and make informed decisions. Does this mean you have to
know everything, of course not! Enforce customized leadership. You may
not be the appropriate leader in all situations. But you should be able to
recognize who is. Then you should not only step aside but somehow get
that person to step up as the leader. This is putting leadership theory into
practice. Recognize who the experts are and who you should be seeking
knowledge from, make it public to show that you are not only a team
player, but you recognize the contribution of others. This is easily done if
you know your team members, know what they do but know the difference
between knowing your team members' jobs and doing it for them. Don't
micromanage, trust the team and communicate that you do.

Micromanaging or testing your team's actions breeds distrust and in an
environment that has increasingly become a world of individuals only hin­
ders your chances of building an effective team. Competition among the
team has increased, which can be good but it can also be bad. You must
emphasize and encourage the concept that even though individual suc­
cesses are good, team work is more important. The minute you start ques­
tioning individual team members' work the more they will become defen­
sive. Give authority to your team members so that they can accomplish
the tasks, advocate responsibility and above all, make the team account­
able. Promote relationships amongst the team and above all, back your
people up. Your team members can disagree with each other and you can
disagree with them, just don't do it out in public. Back-up your team's ac­
tions at all times and if it was wrong, take care of it off-line, never do it
outside of the team.

Establish and maintain a consistent strategy for communication

The biggest mistake in the world that a leader can make is to not com­
municate to the team regarding what is going on. Sealing oneself off and
concealing the reasoning behind decisions will quickly make a once cohe­
sive team become a gang of mercenaries. It is very simple and I have no
idea why it gets screwed up time and time again. Establish a routine

Software Verification and Validation 19

mechanism to get the word out. I advocate that a standing meeting that
occurs at a frequency appropriate for the project is advantageous to all
team members. Whether it is a daily meeting or weekly meeting, you must
have face-to-face meetings with your team. Scheduling and conducting
the meeting is the first step, you still have to make it structured and effec­
tive by establishing goals and objectives for the meeting.

Only make it a required meeting for those that can benefit from attend­
ing. Communicate why each of the participants is involved. It is not so
that they can show mastery of the details in their area of responsibility.
But to receive and share information that would be useful to the entire
team. Lastly, make it clear that all participants are welcome to speak, but
it is not required. As we all have experienced, some people like to talk just
to hear their own voice. Make it clear that this will not be tolerated.

Keep the meeting focused on the objectives. Don't let discussions devi­
ate too far from the main discussion points and don't waste the partici­
pant's time. Let them know that someone is in charge by stopping those
tangential discussions and refocus the group. And above all, make a damn
decision during the meeting. Don't let topics go on and on and suggest a
follow-up meeting to solve it (unless there is no way around it).

The meeting is a chance for your team members to communicate their
ideas in an orderly way. All new ideas should be brought to the meeting.
It is not a good idea to let team members skirt the meeting and pitch their
ideas to you directly. They need to be brought in front of the team. Other
team members have valuable information that could contribute and en­
hance the suggestions.

Meetings can serve several purposes like decision making, communica­
tion, and networking. Networking in the sense that it allows the team
members to get together and socialize. You don't need to hold a mixer but
it is good to let them socialize among the team. Hold yourself accountable
as well as others and show them that you will. To promote open and effec­
tive communication, you need to communicate to the team that encounter­
ing problems is expected but failing to mention problems or even worse,
covering them up, is not tolerated.

Meetings can be very effective but you must establish goals and objec­
tives, let the participants know why they are required to be there, keep the
meeting focused on the objectives, establish a structured forum to commu­
nicate new ideas, and allow the team to socialize among themselves. If
these ideas are followed, then you will quickly realize the advantages for
holding them. If you don't adhere to these basic principles then it will be­
come just another meeting to waste time.

The objective for this section was to introduce some structure, as well as
the concepts, that all leaders must be familiar with and follow. Are these

20 Chapter 2

axioms an exhaustive set for which all great Leaders will emerge? I en­
courage all readers to put forth some extensive thought on these assertions
and I challenge you to come up with additional axioms or even question
those presented here. To put into practice and challenge these axioms
would in fact help you rise above that which I can only convey. This
would be a true display of leadership and possibly the creation of another
axiom "lead others to become better leaders than you."

Section 2.2 Planning

Planning the V&V effort is a reoccurring task used to assure V&V re­
sources are efficiently identified and allocated. Planning also establishes
the goals and objectives for the V4feV effort. I must emphasize that it is a
reoccurring task and not merely performed at the beginning of the project
to never be addressed again. Management, scientists, and engineers must
work together through the course of the project to assure that realistic
plans are established and maintained. It is not possible to plan a com­
pletely risk-free project. There are too many unknowns and too many
variables to consider. As such, plans need to be reassessed during the life
of the project.

Planning can be organized into a series of steps. These steps are identi­
fied in Table 2.1.

Table 2.1. Process Steps for Planning V&V.

_ _ _ ^ a n n m g j ^ ^ ^̂ Description ^
Establish V&V mission Develop the goal for the V&V project.
Identify V&V stakeholders Identify those entities that have a vested interest in

the V&V project.
Identify V&V stakeholder re- Identify the needs and expectations of the stake-
quirements holders.
Establish the V&V objectives Identify five to seven results that define a success­

ful V&V project.
Develop a concept Develop a high-level approach depicting how the

V&V project will operate.
Develop V&V requirements Using the stakeholder requirements, V&V con­

cept, and the standard V&V requirements develop
the system requirements for the V&V project.

Establish V&V scope Using the V&V objectives, identify the software
components that will be assessed during the pro-

... .j.ect.

Software Verification and Validation 21

Identify the products that will result from the V&V
Develop a Work Breakdowneffort and the tasks responsible for developing the
Structure (WBS) products.

Develop network diagram Using the work packages from the WBS, develop
the temporal relationships between work packages.

Estimate resources Using a bottoms up approach, estimate the budget
using the work packages.

Develop project plan Using the results of the previous steps, develop the
^̂ _̂ project plan.

The following sections discuss the concepts that make up each of the
steps in Table 2.1. Section 2.2.1 presents an approach to establishing the
V&V requirements, which includes identifying stakeholder requirements,
establishing objectives, developing the V&V concept, and establishing the
V&V scope. Section 2.2.2 presents the development of the V&V plan. I
only present an overview regarding the work breakdown structure (WBS),
network diagram, and resource estimation because this book is not solely
focused on management approaches. These concepts are basic in nature
and well defined in numerous management books.

Section 2.2.1 Establishing the V&V Requirements

The backbone with any project is the technical scope of the work to be
performed, or the requirements. It can make and break projects. Let me
reiterate, the technical scope of the work can make or break projects. Not
only must you assure that the appropriate scope is established, you must
manage that scope such that the established goals and objectives can be
met. Managing the technical scope of the work is discussed in section 2.3;
this section discusses establishing the scope of work.

Common knowledge, as well as practice has demanded a rigorous ap­
proach towards developing the requirements for a project. At least 10 -
15% of the project's budget should be used for the up front planning,
which includes defining the requirements.

The purpose for this up front planning is to establish the V&V require­
ments as well as the software systems that fall within scope of the V&V
effort. There are two approaches that can be taken to plan a V&V project.
The first approach is a systems engineering approach that is being intro­
duced for the first time and is described in section 2.2.1.1. The second ap­
proach is the one defined in the IEEE Standard 1012 and is presented in
section 2.2.1.2 for reasons of being complete.

22 Chapter 2

Some discussion is warranted as to the reason for the two approaches.
The approach outlined in the IEEE standard is based on the fact that the
V&V project cannot perform every possible analysis task known to the en­
gineering community. As such, a decision-making methodology is needed
to identify which V&V tasks are needed to be performed based on the
criticality of the software. Several factors are taken into consideration
when determining the criticality of the software (e.g. impact to system per­
formance if the software fails). I am not opposed to this approach and it
can be very useful. The reason for me to develop the systems engineering
approach is to lessen the subjectivity and make the planning effort more
requirements driven. This is my attempt to evolve the practice of V&V
towards a systems engineering discipline. This is discussed more in the
appropriate sections.

Section 2.2.1.1 Systems Engineering Approach

The planning approach outlined in this section is being introduced for
the first time and will surely receive an enormous amount of scrutiny. To
this I reply, excellent! My attempt is to evolve the practice of V&V into a
systems engineering discipline, one that is not perceived as being ad hoc
and vague. The objectives for the systems engineering approach is two­
fold, first I want the approach to clearly identify what can be expected to
be achieved once V&V has completed and secondly, I want the approach
to clearly identify why V&V is doing what it is doing (i.e. why do test
analysis on my software development project). This approach follows the
steps outlined in Table 2.1.

The systems engineering approach differs from the approach outlined in
the next section in two ways:

• It uses the same approach as an engineer would use if they had to
develop a system.

• It does not involve the selection of which tasks need to be performed.

I submit to you that using the same approach as you would if you had to
engineer a system is advantageous for several reasons. First, it is nothing
new, all engineers understand the approach taken to develop a system (e.g.
define objectives, develop requirements). Secondly, it is requirements
driven. It starts with defining WHAT the V&V project shall achieve and
the characteristics they must have. Instead of defining how the V&V team
is going to function (e.g. perform traceability analysis) it focuses on defin­
ing what the required capabilities need to be (e.g. provide assurance that
the software will reliably recognize system faults and respond adequately).

Software Verification and Validation 23

The other major difference is that this approach does not go through the
process of selecting which tasks the V&V team shall perform. As you'll
see in the next section, a criticality approach performs certain V&V tasks
based on the criticality of the software. The systems approach semanti-
cally diverges in order to provide some organization and unification to
V&V. The systems approach traverses all the phases in the V&V life cy­
cle (e.g. traceability analysis, interface analysis, requirements analysis, de­
sign analysis, code analysis and test analysis). Actually what I'm trying to
get across is that those "tasks" that I just mentioned are not really tasks,
they represent the life cycle that a V&V project traverses. The reason is
that in order to gain the necessary assurance (if you didn't want assurance
then you wouldn't be doing V&V) a complete systems perspective has to
be obtained. In addition, for the V&V project to draw conclusions about
the software, the entire system needs to be assessed. The entire system in
this case includes the requirements, designs, code, and tests. This means
that the entire life cycle has to be exercised in order to provide verification
and validation on system software.

The first time one reads these paragraphs they will immediately con­
clude that taking such an approach is not feasible. The budget alone would
not support a V&V project that executes every phase. I have two re­
sponses. The first is emotionally based and it is similar to arguing that it is
not feasible for the development team to define the requirements of the
system. They shouldn't execute the requirements phase! Similarly, argu­
ing that certain engineering tasks should not be performed because of a
limited budget. The driving question is not "should they execute the re­
quirements phase", the driving question is HOW should they execute the
requirements phase. I submit to you that the V&V team is no different.
The development project, if they were budget driven, may elect to write
requirements on the back of a bar napkin. No matter how they do it to
meet their budget constraints, they are still going to define their require­
ments. That is the same for V&V. The systems approach requires that
V&V perform requirements analysis no matter what, it is not open for dis­
cussion. How the V&V team performs the task is how they can make it
feasible. They may elect to only review the presentation material at the
requirements review over a two week period. They still performed re­
quirements analysis and make an engineering assessment on the require­
ment's quality but they did it within the constraints of the budget.

The non-emotional response goes something like this, you are correct in
assuming that it may be unfeasible to execute every life cycle phase.
Again, that is an assumption. What we have to consider before we can
conclude with any certainty is HOW those phases shall be implemented in
order to meet the V&V objectives. What I'm saying is that even though I

24 Chapter 2

am suggesting that requirements analysis is performed by the V&V team
every time they work on a project, how they implement that is totally de­
pendent on the objectives that they have to meet. For example, on one
project the V&V team may need to bring in tools to statically analyze the
requirements in order to meet their objectives. On another project, the
V&V team may be comfortable with attending the requirements review in
order to meet their objective. These examples would produce two entirely
different resource needs. My point that I'm trying to make, it's about time
you're probably thinking, is that up front planning needs to focus on
WHAT needs to be achieved first and then concentrate on HOW it is going
to be implemented. As such, when using the systems engineering ap­
proach we do not focus on how we are going to perform the V&V tasks.
Instead we focus on defining what the V&V objectives are and plan for
how to meet them. The standard set of V&V tasks are simply a life cycle
that represents an order of execution. Figure 2.1 depicts this life cycle as
well as introduces the four basic approaches to implementing V&V; man­
ual analysis, static analysis, dynamic analysis, and formal analysis. The
approaches to implementing V&V are what can vary to meet budget con­
straints and more importantly to meet the objectives established in the
planning phase. These approaches are discussed in greater detail later in
this section as well as in Chapter 3.

Software Verification and Validation 25

fTracdabJIAy Analytiii]

f Interface Anslystn J

{' Analysis

MracftaMily Analysis •

Cm

tXtsutt^Mfa

V&V Manageinenl

f Flsnnirig

InfMt Ana)v«is

Conltol

f \
RISK i

MantigonKinl i
k.! J

Change
(It i

J

tt^uftace Analysis

(D(?5ion j
Anolyfiis J

!»«y^^«|fT!W.^!*l>T??!(!'..•«<^'.v....

4

^rramabinty Analysks j

r imeflac« Analysts J

5
Miacealxlity Arialyws J

G litlysis J

Fig. 2.1. The Verification and Validation Life Cycle. Management tasks are per­
formed throughout the life-cycle. There are four basic approaches that can be
taken to implement the V&V tasks within a phase. The approaches are catego­
rized as manual analysis, static analysis, dynamic analysis, and formal analysis.

Defining the objectives is not a simple task. We have learned this from
years of engineering systems. However, it is not impossible. The V&V
team needs to define measurable objectives that can be used to define what
it means for the V&V project to be successful. But how can you do this?
First and foremost, the overall goal of the V&V project needs to be identi­
fied as well as the stakeholders. Stakeholders are categorized as either ac­
tive or passive.

Active stakeholders are those entities that have a vested interest in the
V&V project and will interact with the V&V project. Interaction could be
in the form of using the V&V results to simply communicating with the
V&V team.

Passive stakeholders are those entities that have a vested interest in the
V&V project and can somehow influence the success of the effort. Influ­
ence also comes in many flavors, from standards that affect how the V&V
team performs their work to network administrators that influence which
tools can be installed on the network.

26 Chapter 2

This is an extremely important step, one that is not to be taken lightly by
any means and it is very straight forward. Do not read anymore into it. It
is a basic concept; identify those that care about the V&V effort. Even
though it may be extremely simple to do, it is often over looked. As a
good leader, as you saw in the beginning of this chapter, you have to man­
age the expectations of those that can possibly influence your results.

Once the stakeholders are identified, you must elicit their requirements
or expectations that they may have for the V&V effort. You can hold in­
formal sessions to discuss it, conduct interviews, perform surveys, or re­
search previous V&V efforts. I am not prepared to insert an entire chapter
on requirements engineering, that wouldn't even be enough anyway, so I
point you to any requirements engineering book regarding this topic. The
concepts are quite similar.

As the stakeholder requirements are being gathered the V&V team can
begin studying the existing system requirements and operational needs of
the system they are to V&V. The intent is to gain a thorough understand­
ing of the operational needs and performance needs of the system. The
bottom line is that a combination of the stakeholder requirements, system
requirements, and operational needs shall generate the V&V objectives.
Figure 2.2 depicts the integration of information that makes up the V&V
objectives.

5lak«hnkl6r
Requifemenls

V J

Sys(ein
Requirements

^ J

(V,
Obje< ;tives

f \ Operation;^!
RequiremBTits

V J

Fig. 2.2. Information Flow for Generating V&V Objectives

Let's take Project MUGSEY 0x01 as an example. MUGSEY is a Uni­
versity project that experiments with using off the shelf technology to
reach low Earth orbit (LEO). It is described more in the appendix but ba­
sically it is a scientific platform attached to a helium balloon. The V&V
team on the project has to first identify the goal of their effort. This is
where they identify the need or the problem that the V&V team shall
solve.

Software Verification and Validation 27

MUGSEY V&V Goal

The goal of the V&V project is to assure that the software maintains the
system's health, acquires and maintains operational data and is ade­
quately developed to efficiently enable future missions.

The goal is very high-level but it is concise; it suggests that the V&V
team is going to assure that the software is capable of maintaining the
health of the system as well as maintaining the science data that is col­
lected. Clarity is added as the V&V team refines the goal into achievable
objectives. That when combined and met shall satisfy the goal.

The second step is to identify the stakeholders, those entities that have a
vested interest in the V&V effort. For the V&V effort on MUGSEY 0x01,
the following list of stakeholders has been identified.

• MUGSEY 0x01 Management
• MUGSEY 0x01 Developers
• MUGSEY 0x01 Operations Team
• University Scientists
• Society of Gravitational Studies (SOGS)
• University Network Administrators
• University Software Engineering Department

The following list of items depicts the requirements that each stake­
holder has for the V&V effort. These requirements are followed by some
rationale to further explain the stakeholder's expectation. These require­
ments do not have to be formal requirements (i.e. written with shall state­
ments) they represent the stakeholder's need or their expectation that they
have for the V&V effort. These were acquired by meeting with the stake­
holders and discussing their responsibilities and concerns.

MUGSEY 0x01 Management
• I need all the interfaces verified that the observatory segment has with

other segments in the system.

Rationale: The project manager anticipates a decoupled architecture that
relies on communication between software modules. This will allow
different university students to work on different modules of the system. In
addition, MUGSEY's architecture is going to leverage a modularized
design so that scientists that use MUGSEY can easily integrate and swap
out their scientific experiements. To that extent, the project manager
wants additional assurance that the interfaces will not cause a problem
when they integrate the system.

28 Chapter 2

• I do not want the V&V team to slow down or adversely affect the
production of my development team.

Rationale: The project manager has had some bad experiences with
previous V&V efforts and does not want the V&V effort to impede
development.

• I want all V&V issues resolved with the development team directly.

Rationale: The project manager does not want to waste time on the
formality of resolving issues. He wants valid issues that the V& V team
identifies to be resolved efficiently. Also, he does not want to create a
hostile environment between V&V and development. Developers may get
the wrong impression if the V&V team takes all the issues to management.

• I want all V&V results communicated to me directly (monthly status
and technical reports for each task).

Rationale: The project manager wants timely feedback on the quality of
the system. Also, he wants technical documents that come out of the V&V
effort to be entered into the project's artifact repository.

• I need the fault management system on MUGSEY to work flawlessly so
that we can recover the system in real time.

Rationale: The project manager has envisioned several failure scenarios
and wants, without question, to recover from any fault. His concern is that
the balloon may get away from the operations team and possibly fall at a
high rate of speed and damage something. As such, they are building a
fault management system that maintains awareness of the systems health
and responds appropriately.

• I need all the data to be recovered so that collaborating scientists can use
it.

Rationale: The project manager stated very bluntly that without the
science data then there is no use in funding the mission.

• I need the software to be able to be reused with minimal effort.

Rationale: The project wants to be able to fly again in one week after each
mission. Also, each mission may have different science experiments

Software Verification and Validation 29

plugged into the observatory. The software has to be easily maintained to
make such changes.

• I need the software to be easily understood by other developers so that I
can bring on graduate students in the future.

Rationale: The project manager is using university students to develop the
system. It will take longer than one semester and it will need to be
maintained. As such, different students with varying levels of experience
will be employed on the project.

MUGSEY 0x01 Developers
• We need to easily resolve the issues that the V&V team identify.

Rationale: Schedules are tight and the development team consists of
graduate engineering students. They actually fear the V& V effort and
believe the V&V project will have an adverse affect on their production.

• We need access to the V&V tools and models.

Rationale: The development team needs to be able to not only understand
the issues that the V& V team raise but they 'II need to reproduce them and
verify that they have fixed them. As such, they want access to the tools and
models used by the V& V team.

MUGSEY 0x01 Operations Team
• We need to recover all telemetry sent by the launch package. We need

to be able to communicate with the launch package any time we need to.

Rationale: The operations team has a very strict requirement levied on
them to be able to maintain safe conditions at all times. One of their fears
is that the baloon will get away from them and they won't be able to
maintain contact.

• We need the mission to be able to avoid hazardous zones.

Rationale: During operations the team is going to infer flying and landing
zones of the baloon. Accuracy is needed to assure they avoid hazardous
areas.
• We would like to see the V&V results in case operational procedures are

needed for work arounds.

30 Chapter 2

Rationale: If any problems or risks are accepted by the project and not
fixed the operations team needs to be aware of them so that procedures
during flight could be put in place to avoid those issues from surfacing
during operations.

University Scientists
• We need to be able to plug our science experiments with minimal

difficulty into MUGSEY.

Rationale: Scientists are going to be able to build their experiments
separately from the main development team and then just plug their
experiments into the observatory segment. They are building their
experiments against the interface specification as well as an engineering
emulator of the observatory segment. They don V want to find out there
are problems when it is too late, meaning they don V want the problems to
surface when they try to integrate the experiment.

• We need to be able to extract our science results with minimal
difficulty.

Rationale: The scientists work is totally dependent on getting the science
data. They need all the data that they capture returned to them.

Society of Gravitational Studies (SOGS)
• The project has to come in on cost and on schedule.

Rationale: This is the funding source for the development project and they
are concerned with the management of resources.

• The mission has to recover all the data captured during operations.

Rationale: Not only is the funding source concerned about resources they
want a good return on their investment, which tranlates to scientific data.

• The mission needs to do everything possible to avoid harming anyone or
damaging any property or other material.

Rationale: They want to protect their image as well as protect individuals
and property.

These requirements capture the expectations of those that may interact
with the V&V team. These requirements need to be studied and then fil-

Software Verification and Validation 31

tered. Why filtered? Well let's first examine why we even executed this
step. Why did we even identify who the stakeholders were and what their
needs were? You may even be an independent V&V (IV&V) team that is
chartered to do what the V&V team thinks they should do and not be con­
strained by the stakeholders and as such should not be concerned with their
needs. With that I would say that you are foolish. Any good engineer
knows that they have to manage the expectations of all entities that are as­
sociated with the system. As such, it is beneficial to the V&V team, no
matter their organizational structure, to understand what it is that other
people are expecting or would like to see come out of the V&V effort.
That doesn't mean that you have to do everything the stakeholders need,
just understand their needs and use them appropriately. The filtering
mechanism is one that is associated with the organizational model the
V&V team is assuming. If they are an embedded V&V team then the
stakeholder requirements may be written in stone and those are the re­
quirements that the V&V team shall fulfill. If the V&V team is independ­
ent then it is advantageous for them to understand what others would like
to get out of the V&V effort and they could manage these expectations ap­
propriately.

The stakeholder requirements, the project's system requirements, and
the project's operational needs will then be used to develop the objectives
for the V&V effort. The V&V team needs to identify five to seven results
that define what it means to be successful when complete. Take note that
these objectives will later be used to define the scope of the V&V effort.
The objectives of the MUGSEY 0x01 V&V effort are to:

• Provide assurance that the system software adequately analyzes and
maintains the system's health.

• Provide assurance that the system software adequately identifies and
handles faults.

• Provide assurance that the system software adequately acquires, stores,
and retains data.

• Provide assurance that the system software can reliably communicate
with the ground.

• Provide assurance that the system software is maintainable.

To recap, these objectives are the factors that the V&V team is going to
strive to meet. They clearly articulate exactly what the V&V team is going
to achieve as they are doing their assessments as well as when they have
completed.

Let's just take a moment to assess the systems engineering approach to
planning the V&V effort. As stated before, one of the objectives of the

32 Chapter 2

systems approach was to clearly identify what can be expected to be
achieved once V&V has completed. So far we have identified what the
V&V goal is, who the stakeholders are, and developed V&V objectives
that encapsulate their needs. Just a note, the objectives do not have to only
satisfy the stakeholder's needs. The objectives can also encapsulate other
items that V&V feel are of importance. The main point is that everyone
remains aware of the objectives. The rationale is simple, the V&V effort is
to be planned to not only be able to efficiently allocate resources but to
solve applicable problems. To me, this approach clearly shows what V&V
will achieve once they have completed. For example, there is no question
as to what can be expected from the V&V team. There is an agreed upon
objective that clearly shows that the MUGSEY project can expect the
V&V team to provide additional assurance that the fault management
component of MUGSEY will work reliably. This is only one part of the
planning exercise. The second part is to clearly identify why V&V is do­
ing what it is doing.

Once the objectives are defined the V&V team needs to understand
what it may look like when they execute their V&V tasks. This can be in
the form of a concept of operations. The concept is used to explore the
possible approaches that can be taken to interact with the project and meet
the V&V objectives. Developing a concept is something extremely bene­
ficial to the V&V team. It lays the foundation for how the team will oper­
ate once they begin execution. It is a very valuable planning tool and
comes in handy when communicating with the project. As an example,
Figure 2.3 is the concept for the MUGSEY 0x01 V&V Project. The top
part of the figure depicts how the V&V effort is going to be organized with
respect to the developing organization. This just shows the communica­
tion paths as well as entities that are involved. You could even add data
flows to this diagram so that all parties know the types of information to be
generated as well who will receive it. The bottom part of the figure shows
an example sequence during the requirements phase between the V&V
team, MUGSEY management, and the developers. What I can't stress
enough is that this high-level planning tremendously helps everyone un­
derstand how they are going to interact during the life of the project. De­
fining this up front only helps the V&V team during execution.

Software Verification and Validation 33

Of
(SOOS)

Copftpjfmtop Con w Board

HUGSEY Prejeet t.
tProf%«sa Van LtakmHn)

O«vsiepmont EnflMiesrs

MUCSSeV V*V Pmjtsrt Mtrei9«f
^Uraw»rslly Graduate Sfcderŝ J

HOeSEy MUOSEY
V4V

|« Draft Raquirsments—-I

WertBce Arslysii

I / Risks-

•# Final Requimments—

Is5u» I Risk Rtsolutfon

LRtquifements taalysis 1
Report

-Issues / Risks-

Fig. 2.3. Example concept of operations for the MUGSEY V&V effort

Now that the goal and the objectives have been defined, it is the respon­
sibility of management and subject matter experts to establish the V&V

34 Chapter 2

requirements. The V&V requirements are a culmination of tlie stalceholder
requirements, the V&V concept, and the standard V&V requirements.

Discussion is needed regarding the standard V&V requirements. I had
stated earlier that the systems approach to planning requires that every
phase of the V&V life cycle is to be executed. This is the result of that
statement. I am asserting that there exists a standard set of system re­
quirements that V&V must fulfill every time. Actually there are at least 15
system requirements that V&V must fulfill every time. Meaning, if V&V
is working on a system for the Internal Revenue Service (IRS) then they
will meet this set of requirements. If they are working on a University sys­
tem that auctions off textbooks then the V&V team will meet this set of
requirements. When a group of engineers perform V&V then they will
meet this set of requirements.

It is quite simple; you start with the standard set of system requirements,
fifteen in all, and add to the set if they do not cover those identified by the
stakeholders or the concept. Usually, the requirements that are added are
nonfunctional requirements. Keeping in mind that scope specific state­
ments (e.g. fault management) is not part of the requirements but is part of
just that, the scope.

The standard set of system requirements that the V&V team must fulfill
are depicted in Table 2.2.

Table 2.2. Standard Set of V&V Requirements. During each phase of the life-
cycle the V&V team shall fulfill the requirements within Traceability Analysis, In­
terface Analysis, and Technical Analysis. How they fulfill these requirements is
dependent on the developer's artifacts as well as the approaches the V&V team
choose.

V&V Re­
quirement

No,
3.1

3.1.1

3.1.2

3.1.3

3.2

3.2.1

3.2.2

Title

Traceability
Analysis

Interface
Analysis

V&V Requirement

V&V shall assure all the appropriate parent ele­
ments and child elements are in a relationship.
V&V shall assure that the parent elements are re­
lated to the right child elements.
V&V shall assure that relationships are consistent
in their level of detail.

V&V shall assure that the right interface elements
have been identified.
V&V shall assure all the interface elements are

Software Verification and Validation 35

completely defined.
3.2.3 V&V shall assure that each interface element is

used consistently.
3.2.4 V&V shall assure interface elements maintain the

performance needs of the system.
3.2.5 V&V shall assure that interface elements are test­

able.
3.3 Technical

Analysis
3.3.1 V&V shall assure the right child elements have

been identified.
3.3.2 V&V shall assure the child element satisfies the

parent element.
3.3.3 V&V shall assure the child elements are com­

pletely defined.
3.3.4 V&V shall assure that each child element is used

consistently.
3.3.5 V&V shall assure the child element complies with

appropriate standards and engineering practices.
3.3.6 V&V shall assure the logic and computational

precision satisfy the needs of the system.
3.3.7 V&V shall assure all child elements are testable.

These fifteen system requirements represent the system level require­
ments that the V&V team shall fulfill. These are the characteristics that
precisely show what is needed from the V&V team. The terms parent
element and child element are used several times in these system require­
ments and require some explanation. They will be further defined once
these system level requirements are refined but some explanation will be
given now. The V&V team performs assessments against artifacts. For
example, the V&V team is going to assess the software design of the sys­
tem. The design of the system represents a solution for the software re­
quirements. For the V&V team to assess the design they will need to as­
sess it against the software requirements. The design, in this case, would
be the child element stated in the V&V requirements and the requirements
would be the parent element stated in the V&V requirements. So in order
for the V&V team to fulfill the technical analysis requirements (See Tech­
nical Analysis requirements 3.3 in Table 2.2) for the design, the V&V sys­
tem level requirements would be refined into V&V subsystem level re­
quirements such as:

• V&V shall assure the right design elements have been identified.
© V&V shall assure the design elements satisfy the requirements.

36 Chapter 2

• V&V shall assure the design elements are completely defined.
• V&V shall assure that each design element is used consistently.
• V&V shall assure the design elements comply with appropriate

standards and engineering practices.
• V&V shall assure the logic and computational precision satisfy the

needs of the system.
• V&V shall assure the design elements are testable.

This may take some time in getting use to. Picture V&V as being de­
velopers. In the development world you would state your requirements
and then develop a solution to the requirements. I am proposing that V&V
act in a similar fashion. These 15 system requirements represent exactly
what the V&V team's assessments shall fulfill. They can be easily used to
communicate what is needed from V&V so that they can make a complete
assessment against the system they are to verify and validate. Additional
requirements can be added if they are not covered by these standard ones.
For example, I would add the following non-functional requirements to the
MUGSEY 0x01 V&V effort to fulfill the stakeholder's expectafions:

• The V&V team shall minimize the amount of effort involved with the
resolution of issues.

• The V&V team shall resolve issues with the development team.
• The V&V team shall develop and deliver a monthly status report to the

Project Manager.
• The V&V team shall develop and deliver a technical report for each

V&V task performed.
• The V&V team shall assure the software is maintainable.

These requirements are then used to architect a solution. Once the V&V
team identifies WHAT it is they need then they can identify HOW they are
going to meet these requirements. Are they going to test the system, are
they going to model the requirements and do dynamic analysis to assure
the behavior is what was expected. My point is that now you can start
coming up with a solution. To me, the V&V project is not complete if you
dive right in and identify how you are going to verify and validate the sys­
tem. I feel the first thing that needs to be accomplished is defining what it
is you want to achieve and be very clear with it by stating it as require­
ments.

I don't want to discuss the V&V approaches to meeting these require­
ments as of yet but I'll give an example since this concept is new. For
every V&V project they must meet the standard set of V&V requirements.
During each phase of the life-cycle you must meet the requirements for
traceabilify analysis, interface analysis, and technical analysis. For exam-

Software Verification and Validation Zl

pie, you will have to come up with a solution for meeting the requirements
for traceability analysis. If you are in the implementation phase you will
need to meet the first traceability analysis requirement which is to assure
the design elements of concern are linked to at least one software element
and the software elements are linked to at least one design element. Your
solution will identify exactly HOW you are going to fulfill this require­
ment, which is dependent on the format of the developer's artifacts as well
as the approach that you wish to take. If the developer's design is in a text
document with diagrams and the source code is structured such that the
function headers identify the design elements the particular function im­
plements then you may choose to take a static analysis approach. The
team would have to perform three V&V tasks to fulfill this requirement.
First they would have to use a tool to extract the design element from the
function headers. Secondly they would have to review the output from this
extraction and determine if all of the design elements are linked to at least
one software function. Thirdly they would have to identify if there are any
software functions not related to at least one design element using the in­
formation provided by the extraction. This systems approach relies on de­
fining the V&V requirements and then architecting a solution that meets
the requirements. The Specifics for an actual solution are discussed in sec­
tion 2.2.2 when we establish the V&V plan as well as in Chapter 3.

The last step of the planning process discussed in this book is that of
scoping the system. You need to scope the system in order to identify the
software components (e.g. subsystems, modules, functions) that will be as­
sessed during the V&V effort. Basically you need to answer, what parts of
the system need to be verified and validated in order to meet the objectives
and goal for the project. You already know the requirements that you need
to meet, but in order to meet the objectives what parts of the system have
to be assessed. This is the scoping step.

You basically assess the software system against the objectives that you
previously identified. For those software components that are related to
the objectives, they become included in the scope of V&V. If the software
component is not related to an objective then it is not part of the scope.
We choose to use the project's system requirements to perform the scop­
ing. One may be thinking ahead and wondering if you use the project's
system requirements to identify the scope then how are you going to know
what software requirements, software design elements, software code
modules, and software test cases are within scope. I would reply with, you
use a magic wand. No, just kidding, since you are performing full life-
cycle V&V the traceabilify analysis requirements that the V&V team shall
meet will establish the components that are related to the system function-
alify within scope. This cause-and-effect relationship will be used to guide

38 Chapter 2

the V&V team to those components that require verification and valida­
tion. So let's use Project MUGSEY 0x01 again as an example along with
the second V&V objective:

Provide assurance that the system software adequately identifies and
handles faults.

We go through each system requirement and mark it as either being as­
sociated with the objective or not. So for MUGSEY's system require­
ments we determine that the following system requirements are associated
with the second V&V objective:

• Rquirement 3.4.3.1 Stored Commanding
• Requirement 6.3 Fault Handling
• Requirement 6.3.1 Science Faults
• Requirement 6.3.2 Abort Mission

These four items are the system functions that V&V must assess in or­
der to meet one of their objectives. To do so, they will need to fulfill the
V&V system requirements stated in Table 2.2 and focus on the stored
commanding, fault handling, science faults, and abort mission system
functionality. Keep in mind this will only satisfy one of the objectives.
The scoping exercise needs to be performed for the other objectives as
well. As I stated before, traceability analysis will establish specifically
those software requirements, those design elements, those software ele­
ments, and those test elements associated with stored commanding, fault
handling, science faults, and abort mission functionality. The road map is
set for the V&V team and their requirements are established.

So let's take a moment and recap exactly what we have done for plan­
ning a V&V effort. The first thing to planning a V&V effort is to establish
the goal. The goal communicates the problem that is being solved by the
V&V team. It needs to be at an abstracted level in order to give some fo­
cus towards the development of objectives but it can't be too specific in
that it restricts the process and outcome. It is also a communications tool
for the V&V team and stakeholders to know what V&V is striving to ac­
complish.

Understanding the stakeholder's needs is the next essential step. These
will be used to help formulate the V&V objectives and possibly V&V re­
quirements. The stakeholder's needs are used as input in generating V&V
objectives, V&V requirements, and the V&V concept.

The next crucial step is establishing the objectives for the V&V effort.
They are derived using the stakeholder requirements, the project's system
requirements, and the project's system needs. The objectives encapsulate

Software Verification and Validation 39

exactly what the V&V team is going to achieve. These objectives drive
the scope of the V&V effort and possibly additional V&V requirements.

Next in the planning phase is the development of a V&V concept. This
concept takes into account the possible organizational models the V&V
team could assume, the interactions the V&V team will have with devel­
opment, and potential artifacts the V&V team will be working with. Per­
forming an assessment on the development artifacts that will be available
to the V&V team is also essential during the planning phase. This will
help the V&V team plan the concept as well as formulate solutions to the
requirements. If they know the level of maturity the artifacts are going to
be in or the type of format then different approaches can be used.

The last two steps can be performed in parallel. These steps are the de­
velopment of the V&V requirements and the scope of the V&V effort.
The V&V requirements are pre-defmed and only require amending if the
objectives call for it. The scope of the system that the V&V effort will fo­
cus on is a simple process of identifying what system functionality requires
an assessment. This translates to identifying which system functions are
associated with the established V&V objectives. The V&V team shall
meet the V&V requirements by looking at the applicable system function­
ality, or the scope.

The results of these planning steps are depicted in Figure 2.4 and Figure
2.5. The goal, objectives, and the V&V scope is presented in Figure 2.4
and the V&V requirements are in Figure 2.5. These two figures represent
the results of planning the V&V effort on Project MUGSEY 0x01. One
note on the results is that one of the objectives, "Provide assurance that the
system software is maintainable", is not represented in the scoping exer­
cise but was added to the V&V requirements. Since maintenance aspects
of the system are not related to just one system function it seems logical to
add it as a requirement in order to fulfill the objective.

40 Chapter 2

v a ¥ Qmi
itm !gi>fli M Wm ¥tl¥ f»#M;t ii fe «ii»«# Will Um »flwn(« n>«wiiMrir!& «w ijf^^wr* tmnWi, mqmm^

Fig. 2.4. Planning Results for the V&V Effort on Project MUGSEY 0x01.

Software Verification and Validation 41

To
5T

Ifttnaianal Rayl foniews

mneetSMiy Analysis
J l 1

jV^y shiMl assMfe sll ine sppEOprislg parent elgmenis anti chiW ©ign^tms are in a

JJ_2_
3 1 3

15

V&V shall «ssut8 lliai jhg gjinirt eitmtika aft telalBd to Iht Bflhl cliild e)«n»n"is~
Iv&V sh2ll"assute"ihal"reiat!Qnships am'cGnSistsiil m Ihsit fee! af deliil

} 2 J
3 2 2

Wtrfact Analysis
Vg'v shall assuM ilial l l » liflhl inleifac^ elemenis lo>;e b«en idtiliBtil-^^^^
V&V shall assuie all Iht inttrfaet 8tem«Bts aie corripiMeiy jJeBneiJ'

J 3 8

3 3 ?
To
4 J

HI

V&V R«flyii«w8i«s

shall assMeftajgachirteifate rtfreenl ts as«l consisigMly
V sliall assure

thjiga<:ji_
lll<#l<8Ct t eiertienls mamlainrhg pgrforrrrarie^ aegds <rf the system

Vshall assMrethai iweiface tiemenw ara l»slaM«
Taciinicat Analysis

Iv&V shall assm the nghi child alemanlr; 'has.'i ba^R irjemified
V&V shall assure tha child i

j v iV r i
It sMjsjBS Ijia paienLtJtMf Bj......

I sssmg lh» child t ienitnt; ar« complawl',' drtrswi t ienitnt; ar« com
[V&V shall assyre thai each cWW clerBent is usad cenaglently
iv&V shall assure the cWH elernwit certjplres wiUi »(!p(«l»iate !

tosl«n_

cemplres wiUi »(!p(«i»iate slandarts and
PMcfeas ^ _ _
ssuie the logic and carapiitational prtcision saiisf«/ iha nteSs ol (ht

V&Vi assure all ch
eiMil Result

all cliiM «lanenls ara lestaMe,

the VSV leain shall minimi;* tht amount ol tfort iwobeil «ilMlw resalytion o(issags
he V&V team shai l i s t t e iswes with ine feelopmsni leim

V&V team Shan i)»ial0jr an?
V taam shall ttev8lo(> and

V&V taaffl shall assure the sotaafe is mainlawaMe

rieiat^ a mor^lilv states mpatt la tirg Pme.ci f-lanaqei
ilafc'ef a tachnical t.jpart fm each V&V task perlotmed

Fig. 2.5. V&V Requirements for Project MUGSEY 0x01.

As you can see the systems approach to planning is very goal, objective,
and requirements driven. It is easy to identify why V&V is assessing cer­
tain items as well as what they will achieve when they are complete. I
truly advocate this approach but it is more time consuming as compared to
the criticality approach defined in the next section. It is up to the V&V
team to choose the approach they feel will provide them with the best
plans to begin execution.

Section 2.2.1.2 Criticality Approach

To understand the approach outlined in the IEEE standard a concept
needs to be introduced, which is the concept of a software integrity level
(SIL)^. This concept is being reused from the IEEE standard. The premise
is that different levels of integrity are used to describe the criticality of the
software systems. Once that is accomplished, different sets of V&V tasks
are performed for specific levels of integrity. This approach asserts that

2 Software Integrity Level (SIL) is a concept that was first introduced in the IEEE
Std 1012-1998. It is based on the fact that software components are either criti­
cal or not. The SIL established degrees of criticality and allows software com­
ponents to be categorized based on their level of criticality.

42 Chapter 2

higher levels of software integrity warrant more V&V tasks to be per­
formed. In addition, integrity levels are assigned to specific software
components, depending on which integrity level is assigned determines
whether or not the software components fall within scope of V&V.

The approach is quite basic. The idea is to break the system down into
software components. Components are user-defined and can be require­
ments, functions, groups of functions, components, or software subsys­
tems. Since this planning is performed as early as possible, I have found
that using the system requirements provides the best results.

After defining what a software component is for your project, you must
define the approach for assigning a SIL to each software component. This
simply means that the V&V team must identify the criterion that differen­
tiates the levels of software integrity. The V&V team can reuse the defini­
tions documented in the IEEE standard or create their own. Figure 2.6 pre­
sents the SIL definitions from IEEE.

IEEE Std. 1012-1998 Software Integrity Levcs Scheme
Crltlcalfty

High
Maior

Moderate

Low

Description
Selected ftncBon afltecls cnl«al perrormance of t ie sysfem
Selected fmcfon affecb important system pertormance
Selected fmclon affects system perfomiance, bat wortcaround
stratesjes can be imptemented to compensate im loss «rf
performance
Selected function has noticeable effect cm system pertormanca l i t
wiy creates inconvenience to the user if • « ftuclon does not
pertoim in accordance iHtti iK|iirBmeite.

Levei
A
3

2

1

Fig. 2.6. Software Integrity Level Definitions.

Once the V&V team agrees to the SIL definitions the team must identify
the V&V tasks associated with each SIL. Again, the V&V team can use
that already defined by IEEE or they can establish their own. Figure 2.7
presents an example of V&V tasking assigned to each SIL.

Software Verification and Validation 43

Phase

Requifements V&V

V&V Tasking
Tasks

Tfsceabiiitv Anaiysis
Reqyifeoients Evaluation
interface Analysis
System V&V Test Ptan Generation & Vafiflcslion
System Test Pian Anaiysis
Acceptance V&V Test Plan Generation & Verification
Acceptance Test Plart Anatysis
Hazard Analysis

Software InlSflritv Lewi {SiH
Lava! 1

X

X

Level 2
X
X
X

X

X

Lev^l 3
X
X
X
X

X

X

Le« t4

X
X
X
X

X

X

Design v a v

Tfaceabitity Analvsis
Design Evaluaticn
trrterface Anatysis
Cempsnenet V&V Test Plan Ceneaiion & VefiBcatrati
ComfHjnent Test Plan Analysis
ini^ratton V&V Test Plan JSeneration & Verification
tm^ r ^ i on Test Plan Artalyeis
VSiVTest Desijn GeneratisM&yeritcaSion
Test Desi^fi Anaiysis
Hazard Analysis

X

X

X

X
X
X

X

X

X

X
X
X
X

X

X

X

X
X
X
X

X

X

X

fmpiemsfitaiion VSV

Traceatjiiity ^ a i ^ i s
Sttotcs Co<te Effliuation
interface At^aiysis
V&V Test Case Generation & Verification
Test Case Analysis
V&V Test Procedure Generation & Venficatron
Test p f ^ e d u r e ^ a i v s t s
Citmportenl V&V Test Execution atid Vetificatioo
Cont inent Test Results Analysis
Hazard Analysis

X

X

X

X
X
X

X

X

X

X
X
X
X

X

X

X

X
X
X
X

X

X

X

TestV&V

Traceabilifv Analysis
Acceptance V&V Test Procedure Generation & Veri^ation
Acceptance Test Procedure Anaiysis
tmesralion V^V Test Execution & Verification
integration Test Results Analysis
S-ysterri V&V Test Execution & Verification
System Test Results Anaiysis
Acceptance V&V Test Execytion & Verification
Acceptance Test Results Analysis
Hazard Analysis

X

X

X

X

X

X

X

X
X

X

X

X

X

X
X

X

X

X

X

Fig. 2.7. V&V Tasking per SIL level.

This simply means if a software component is considered to be a soft­
ware integrity level of 1, then those tasks that have an X in the SIL column
labeled "Level 1" are performed by the V&V Team. The function of plan­
ning is now an iterative loop that takes each software component and as­
sesses it against the SIL definitions. This will result in a SIL assignment
for each software component.

Consider the system requirements for project MUGSEY 0x01, depicted
in Figure 2.8, as an example. The system requirements were assessed
against the SIL definitions from Figure 2.6. The resulting SIL assignments
per requirement are shown in the last column of Figure 2.8.

44 Chapter 2

U H ; s = V a C i 5 . , u , » K « a . n w .

3 1.1

:o .'

5 1 ;

in

3 3 2

-.23

H A

i J 2

sn

5,3^4

i - 5 -3

J J 6

J J l

i^4 3

i J 3 1

5 . - I J :

3J.3 3

= 1

4 . U

i j j

- i J 3

;-a

! 1

; 2

6 3

(. 5 , 1

. S 3 ?

6 4

• : - i ! »

i i u f ia5 Ff t%^t! i :y

i i »5 in? ES%ivh; u a t

I m f i » j 3 laisp

T* i : ^» i i t i : i 4 r r r : ; t i « i : y

Ts^sp j r iKT i S.2>ckl:ai

T - ! ! ^» l i r t : i» 5 U ! ! ^

? a m c n D « a

?a^t!i»-. D s£i f i t ^ « « y

? 3 i m e r . D x j A ; i c i ; M ? , * i c t ; a c n

P o i i i i w x D x i ?2«silJ::«R5icbscii

?c«i! icn DX2 . ^ n ; i * S Elili;^

j ^ i l i c n D K I pcfciiias $ u m | :

T#; i*mlr.-

C = » n m = . n ,

i l^f jsc Cc i i t a r .d i j i s

K t i l ' l i i r -* Cajs isanimf

irn'Misss Ca rs ra i i s i

il«:e-'5iq.- i spa imof !

R?cc^"ir.' 2 ?s;:T3:ief! PSTtcamn;!

IUc«*.-wy J4(:4aa£i3? i i2ch: ! *

E-SCET--*̂ ,- S^MatiCR SlCSfes

Q;K*L-cr i ;

Rs;:^'--^ T^'iWss^.'

c -« [» iu . i ; i i s

Favlf K j ix f l iJ j j

- , » . - . F

Ais:rt:.£ik-!iS

X>^ut:%-,

DwciV- i icn

? I 3 V H : i ' -KKj i i r ^ a s is ics i rs ty stu! l t -4d>iss!K; ai j f ^ r ^ r : X

? :a . t « t i'vji'A i ' f c f s i - a j d . ' . u a i c f M C i!43C*

i t a v « ! i h jH H-i { : ! :^ - !a i iv«!^ *"• Jfe i ! ;* l K i U r i : - o j j : t Ei imirei

. " X ' u i S ' i ' C ^ . s S u I l ^ i t e ' . i r t i net* i lKri iJ4,Io«| iru««. a s i

SKCff i i .

.nlEiEKG*ii«^ir^i ihM hi £ ike t« i f * t !a_ ' * i i v i & i p f i : v i i c ? ! c 5 2

ACGi lT i 'CsS" . jH iU i isaM-* »v»;s>%-»* Jini p t - iX i i j w i i a i u * ^ !

ai!i.r-? % ."-"luric!

>-CSE\" &JC 1 i h i t i m\2lic4-.* i x n i a i i i i i i : i t b n ^ f s r c | ! i s ^ ^

i jD iK i ! i4-«s««i K.'hin,«3i!»i*a«d4i5 a • ihar. i i rasite 5 v W C ff i t «s

: ^ i i 3 * i c r , ihatl cccvT^'-.dsnS i s c K i i i o: i f i i i i iK- . i

C^sns«p#r3ii!3i..iS.XJsE"! txC-i i !«; l d*yic^-ipxsacfK.!e

l { 5 m i « p r j l i m ML 'GSE: 'CxC l i l u U fcmor.slissa-i^tlij-ts

^tt-'GSJTs'C^C c|K«i i i iSt i i k i l l land E n i i i i a ! : f e & , i ! ! ^ tic^tszc^

j n ^ L ^ i i t u ; Jii5!«;ir*.-ji -4:i«iiv.illKil Jua i - i - s .

S lL^ i ! j i ! t - ! j a iU

C i l : i c J b

l - i l h

y^ict

>.lac.srj:?

H l f h

M a j K

M c o i r i N

H i j h

H i i h

M y ^

M i j s x

MiJEs:

Ma js t

H igh

:-tyQE

:.5«=r

M « ^ j u

IC^V

Ml jO f

L<7 .̂

>.bjc«

> f cd«a t t

L P A

itcc-etats

:.><«„•.

:iDtje»

A^JSK

:v£j ja

>-ib..<^

J L

^
\
2

-
J

2

-
•
2

3

:J

J

-
2

2

;
1

3

1

3

;
1

:
2

2

;

3

3

Fig. 2.8. Example SIL Assignment for Project MUGSEY 0x01.

Now that each software component has been assigned an integrity level,
it becomes an easy look up in the table to identify which V&V task should
be performed on that component. Keep in mind, the resulting assignments
of SILs were my own judgment and in practice would require a team of
subject matter experts to assign the SIL level. The resulting Requirements

Software Verification and Validation 45

Phase V&V tasks that would be performed by the V&V team on Project
MUGSEY 0x01 are depicted in Figure 2.9.

MUGSEY 0:KD 1 VaV Projed

lA.l
5 J J
3.1J
3.2.1
112
3 J 3
5.34
1.12
53 J
5 J,4
1.15
3i .§
3,4.1
3.-iJ
3.-13.1

3,-^3.2
'3,4 J,3
\iA
1-1.i.l
14,1.2
•4.JJ
1̂1)
5.1
5.2

6 3

6.S 1

'63.2

6 4

lrsaft«| R*jĉ <ia?2n

linasj.ti|Sta}t^

T*ftspaf a&t* F^rsitusts: y

T«tt«;«ratrt« lt*»d'stt<m

T^s:3|5* iX&t-i %t^x^

PcsiticsaDaSa.

??3&iti?»iOaia Ft^-u^Jtcv

Pc&itimData AUr;ii*R*i<5ktt<i«

Posi^cnDau ^ositicst R**cbis?j«

Posidcn Data A*in^«* % ian^?

P'iMitisst Dau ?esi*im S tutf^

T^Uim^*'

Contstutiiia^

Stcfsc €cmtn»t&^

E*^ TftT^ Cati«t«tdifi|

|[t̂ 'a1siS48* Cmysamj

F,̂ X'-'''-&xvS gpgau«i

Rscevar," S ̂ -auucxi P^tfctntajx:*

EK«fv^y S s!5:?<;sH«n ?a.a;kife

R*3cv-«r,- S • '̂ S'taiicn 1 n-cV̂

C *̂5ra&«ts.

R -̂c-w'f T*i«^w5r.'

C^̂ rsfsaf&jir̂

F«iilH^£iks

sd4fc«Fx>tfe

AbsstMijiom

Data Li:i»j

11.

4

3
"^i

4

S

>
4

4

5

3

S

3

4

5

5

:
;
3

5

2

;
^
^
3

3

5

5

Requirements VSiV
V^W Tasks

1
o
E

or

cr

!

> «J

si

m
< c
^4S

o ^

c
a.

^5

$ 1 ^

m

X

X

:<
X

X

f\

X

X

>:
X
X
X
X

fif
X
X
X

X

X

;̂

V

x
X

X
X

7v

X

X

X

X

7'^
X

K
• * •

X

X

X

X
V

X
V

X
•V

X
X

X

,̂ ;
X

X

X

X

X
X

X

X

X

X

X

f?
X

X

X

X

X

X

X

^
X

X

X

X

X

?\

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

*̂

X

X

X

X

X

X

X

X

X

X

X

X

X
•V

X

X

X

X

X

V

X
V

X

X

X

X

X

X

X

X

X

X

X

fV

X

X

X

X

X

X

î
X

X

X

X

X

X
X

7<

Fig. 2.9. Example V&V Tasking for Project MUGSEY 0x01.

As a result of this approach, the V&V team would perform Traceability
Analysis for the majority of the system requirements, requirements analy­
sis for all of the system requirements and interface analysis for the major­
ity of the system requirements except for invalidating commands, recovery
separation performance, and operations. The V&V team would assess the
system test plans for a few of the requirements and they would develop
system test plans for the remaining. The V&V team would assess the ac-

46 Chapter 2

ceptance test plans for a few of the requirements and develop acceptance
tests for the remaining. Lastly, the V&V team would perform hazard
analysis on the majority of the system requirements. For the detailed de­
scriptions of these tasks I refer you to Chapter 3.

IEEE also introduces another level to assess the software components
against and that is the likelihood that an error would be inserted into the
system. A combination between criticality and likelihood is then used to
identify the tasks that shall be performed as well as the software compo­
nents that fall within scope of the V&V tasks.

The most important thing to take away from this section is the fact that
if you choose to use this planning approach then your documentation must
be impeccable. Specifically state how your team is to define software
components. These software components are the basis for your assess­
ment. Next, be very clear on how the team is to assign software integrity
levels. If using a combination of criticality and likelihood or just critical­
ity, be sure that it is clearly documented what it means for a software com­
ponent to be different levels of each. Next, identify the V&V tasks that are
associated with the different software integrity levels. And lastly, when
assigning software integrity levels, have your subject matter experts state
their rationale for why they think that software component A is a high
criticality or whatever the resultant criticality is. This rationale is essential
for justifying why certain V&V tasks need to be performed as well as if
the project reassesses the plan then they will need to understand why they
are performing certain tasks.

As you can clearly see this approach is very basic and very straight for­
ward. It incorporates a lot of engineering judgment that when repeated
will most likely yield different results. This is why I can't stress enough
that your project's documentation has to be flawless.

To conclude let's take a look at the differences between the systems en­
gineering approach to planning and the criticality approach. There are
three main differences that can be seen in the results. First, the systems
engineering approach does not include the following system functions in
their scope:

• Requirement 3.1.2 Imaging Resolution
• Requirement 3.4.3 Commanding
• Requirement 4.1.3 Recovery Separation Strobe
• Requirement 5.0 Operations

This simply means that the systems engineering approach has deemed
that these system functions are not associated with any of the V&V objec-

Software Verification and Validation 47

tives. As such, the V&V effort does not need to include them when per­
forming their analysis.

The second difference is the systems approach has identified one system
function that the criticality approach does not and that is requirement 3.4.2
"Data Dump". The systems approach has indicated that this functionality
is important to the overall success of the mission and will include it in their
scope when performing assessments.

The last difference is very significant. The systems approach focuses
the V&V analysis according to the objectives they wish to achieve. For
example, the systems approach will focus the V&V assessments on stored
commanding, fault handling, science faults, and abort mission functional­
ity with the objective of assuring that these functions can adequately iden­
tify when a fault is present and handle it appropriately. The resulting
V&V effort from the systems approach is much focused and can be char­
acterized as having more depth instead of breadth. As opposed to the criti­
cality approach, this seems to provide more breadth than depth. This
means that the criticality approach results in V&V efforts that take a broad
brushed approach to finding issues. The V&V tasks are focused on finding
issues, any issue anywhere. The systems approach; although may find is­
sues, focuses on achieving an objective (e.g. assuring that fault handling is
adequate for the system during operations).

Section 2.2.2 Establishing the V&V Plan

Attention needs to focus towards a solution now that the goal, objec­
tives, requirements, and scope have been established. The solution shall
reveal HOW the V&V team is going to meet the established requirements
and objectives.

A network diagram is a very useful planning tool that will aid you in ar-
chitecting a solution. The diagram is usually represented graphically and
then displayed in its normal form of a Gantt chart. For example, we have
used Project MUGSEY 0x01 numerous times and I will refer back to it
now.

I will use the V&V requirements for Interface Analysis as an example
for laying out a solution. Let's refresh, the V&V requirements for Inter­
face Analysis are depicted in Table 2.3.

48 Chapter 2

Table 2.3. V&V Requirements for Interface Analysis.

V&V Re­
quirement

No.

Title V&V Requirement

3.2

3.2.1

3.2.2

3.2.3

3.2.4

3.2.5

Interface
Analysis

V&V shall assure that the right interface elements
have been identified.
V&V shall assure all the interface elements are
completely defined.
V&V shall assure that each interface element is
used consistently.
V&V shall assure interface elements maintain the
performance needs of the system.
V&V shall assure that interface elements are test­
able.

During the requirements phase, the V&V team shall provide assurance
that the softw^are interfaces adequately support the identification and han­
dling of faults (the second V&V objective). The project's system require­
ments that V&V needs to assess are stored commanding, fault handling,
science faults, and abort mission requirements. A netw^ork diagram needs
to be developed that meets those 5 interface analysis requirements. Table
2.4 identifies the V&V tasks that need to be performed to meet the Inter­
face Analysis requirements. These tasks v îll then be used to develop the
network diagram and project schedule. As a side note, it may not be clear
as to how^ I came up with the V&V tasks. For the purposes of discussing
planning let's just assume that the tasking is adequate and concentrate on
the planning steps. We will readdress the specific V&V tasking and possi­
ble approaches in Chapter 3.

Table 2.4. Set of V&V Tasks to fulfill Interface Analysis requirements.

V&V Task V&V Requirement V&V Approach Duration Days
Fulfilled (Min, Avg.,

Max)
Identify a set of potential
faults

Identify the interfaces re­
quired to identify and handle
these faults
Identify the data items that

None

None

None

Static Analysis
{Use Cases and
Scenarios}
Static Analysis
{Use Cases and
Scenarios}
Static Analysis

(1,2,3)

(2,4,6)

, (^i2L_

Software Verification and Validation 49

should be passed between in­
terfaces
Compare and contrast the re­
sults with the system and
software interface require­
ments
Determine if each data item is
completely defined
Graph the locations of each
data item and determine if
they are used consistently
Add temporal properties to
the data items and simulate
transactions
Develop test cases data items
and fault scenarios and de­
termine if any of them can
not be tested.

3.2.1

3.2.2

3.2.3

3.2.4

3.2.5

{Use Cases and
Scenarios}
Manual Analy­
sis

Manual Analy­
sis
Static Analysis

Dynamic
Analysis

Static Analysis

(5,7,12)

(1,3,5)

(2,7,12)

(7,14,24)

(2,3,4)

The first column in Table 2.4 depicts the V&V task. The second col­
umn identifies which Interface Analysis requirement is being met by the
V&V task. The third column represents the approach that is to be taken
when implementing the V&V task. The four possible approaches are
manual analysis, static analysis, dynamic analysis, and formal analysis.
These are discussed more in Chapter 3 when we discuss the V&V life cy­
cle. The last column represents the amount of time needed to perform the
V&V task. The values represent the minimum amount of time, the aver­
age amount of time, and the maximum amount of time. This is when the
experience and knowledge of the SMEs is crucial. Management and
SMEs have to work together in order to come up with an adequate ap­
proach to performing V&V. The reason for the 3 different values for dura­
tion is that most management groups use simulation as a management
technique. They will perform Monte Carlo simulations on the tasking to
determine which tasks affect the overall project the most and which ones
you could possibly change that would have the greatest impact. It also
leads to some very interesting "What I f strategies that management can
use to control the project. These values are also used to generate cost es­
timates. Again, these are pretty standard techniques and I leave you to
your favorite management 101 book for more discussions.

This data is used to develop the network diagram. This is where the
logical relationships are established between tasks as well as duration and
resources. Figure 2.10 depicts a portion of the network diagram that repre­
sents the tasks in Table 2.4. A network diagram is essential for planning a

50 Chapter 2

V&V project. If you have never used a network diagram or cannot build a
network diagram then stop all of you management activities and take a les­
son in project management 101. It will surely cover the development of
network diagrams. They are so simple to build and are often overlooked
by management. Figure 2.10 shows an example network diagram and Fig­
ure 2.11 shows the project schedule for the V&V effort on MUGSEY
0x01.

l4ei^B^ iitmisKtfS id#i^f)f Oflta i^BHp t^mnpam S. C o r ^ a a j wtah %%

Q«%mmk>m if 4mtc Meinf mw

UMitl InseSacB Ira
5tar:J S^'XEM ES.

/™CT:8;3i.-f i f t '.•.':

!>•.: » ^ '..inM-^

mmiim

S-^S. - - -> 5*jr^ *••:<» Z). i

r,».,,»« Ji.^;«.».
.^^ •<!SLi~«S.2i2SJ ^

Fig. 2.10. Example Network Diagram for MUGSEY V&V Project.

^ J G a P i?#V inf#ri#cii (Ui#^i*

Fig. 2.11. Example Schedule for MUGSEY V&V Project.

The network diagram in Figure 2.10 is used to generate the schedule
that you see in Figure 2.11. These tasks are those that are needed to be
performed by the V&V team in order to fulfill the interface analysis re­
quirements. As I stated before, from here on out the planning steps are
standard management practices that appear in your favorite management
books. If they are new to you and you have management responsibilities
for the V&V project then maybe you should book mark this section and
come back to it when you get up to speed on these approaches. The last

Software Verification and Validation 51

step in the planning process is to develop the project plan. This is simply
compiling all of the data, discussed thus far, into one document.

Table 2.5 presents the topics that need to be addressed in the V&V Pro­
ject Plan. The paragraphs that follow Table 2.5 provide more detail. Hov^
the V&V Project Plan is organized is not of concern to me. What I am
concerned about is the content of the plan. At a minimum the plan needs
to cover the topics outHned in Table 2.5.

Table 2.5. Topics to be addressed in the V&V Project Plan.

Project Plan Topic
Overview

References

Description

V&V Concept

Schedule

Resources

Technical Scope of Work

Tools and Methods

V&V Management Approach

V&V Life Cycle

Describe the system that V&V is to work on. In
addition, identify the V&V goal, V&V stake­
holders and their requirements, and V&V objec­
tives.
Identify any artifacts used to generate the plan as
well as define any acronyms or terms that make
the plan understandable.
Identify the organizational approach the V&V
team is employing as well as how the team is go­
ing to interact with the development project.
Roles and responsibilities need to be identified.
Either present the master schedule in the plan or
reference the external file.
Discuss the resources required to execute the
V&V plan.
Discuss the scope of work to be performed by the
V&V team as well as the approach taken to de­
rive the technical approach. If you use the sys­
tems engineering approach then this is where you
discuss the V&V requirements and V&V scope.
Identify any tools that are needed to execute the
V&V plan or special methods that will be used.
Discuss the management of V&V including con­
trol measures, risk management approach, issue
management approach, and the reporting re­
quirements that V&V shall follow.
Discuss the life cycle for the V&V effort detail­
ing the V&V tasks that need to be performed and
how they are going to fulfill the V&V require­
ments.

An overview of the V&V project consists of identifying the goal of the
V&V effort and its objectives. This section shall identify the system to

52 Chapter 2

which the plan applies as well as the specific parts of the software system
that falls within scope and those that fall out of scope. So for example,
Project MUGSEY 0x01, it may be that the ground system is not within
scope of the V&V effort to which this plan would not be applicable. The
overview section needs to make it very clear as to what V&V shall achieve
and what it takes to be considered successful. The technical scope of work
is also addressed later on in the plan. In the overview it just needs to be
stated as to what parts of the system this plan is applicable.

Other items of information that may be included in the overview or be
separate include referenced documents, definitions and acronyms. This in­
formation is used to identify the documents used or referenced in the plan
as well as used during the implementation of the project. The acronyms
and definitions serve to assure a proper interpretation of the plan, which
includes identifying and spelling out all acronyms and notations that are
used.

The V&V concept needs to clearly show the V&V organization, roles
and responsibilities and how the V&V project interacts with the develop­
ment project. Specific items that shall be addressed include:

• Define the organization of the V&V effort, relationship to other efforts
and entities, as well as lines of communication.

• Identify the authority for resolving issues.
• Identify the authority for approving V&V products.
• Identify the authority for making any changes to the plan.
• Identify the responsibilities for each element in the organization.

The master schedule can be an external reference or embedded in the
plan. The schedule is a living document and will change as the V&V pro­
ject is implemented. The master schedule shall address the following top­
ics:

• Summarize the various V&V tasks and their relationships within the
overall project environment.

• The objective is to spell out the orderly flow of artifacts between V&V
activities and project tasks. This helps ensure that V&V tasks are ap­
propriately placed and their deliverables are identified within the lar­
ger project environment.

• Focus on the V&V tasks and their placement within the project sched­
ule and highlight the V&V tasks, deliverables, and completion dates.

The resources needed to implement the V&V tasks shall be identified in
their own section. More than likely it will be a bottoms-up estimate devel­
oped from the work packages and the identified risks. This section shall

Software Verification and Validation 53

summarize the resources needed to perform the V&V tasks, including
staffing, facilities, tools, finances, and special requirements (e.g. security
access, documentation control).

The next section shall identify the approach taken to establish the V&V
requirements. It describes the scheme for identifying V&V tasks and their
scope. This can reference external technical reports that provide the de­
tails of the process; however, a summary needs to be included in the plan.

The tools and methods section shall identify the required resources
needed to implement the V&V tasks. Identify the tools, techniques, and
methods employed by the V&V effort. The purpose and use of each shall
be described. Include the following information when discussing tools and
methods:

• A description of, or reference to, the methodology.
• Risks associated with a tool or technique.
• Alternate approaches.

The V&V management section of the plan needs to address actions to be
taken by management during the implementation of the V&V effort. For
the management of V&V actions that need to be considered and addressed
include how the V&V project is going to respond to a change in the tech­
nical scope of the project they are V&V'ing. The control measures that
are to be used by management to assure that the V&V objectives are being
met as well as the schedule and budget are on track. Tools that manage­
ment can use include control gates (e.g. management reviews), earned-
value, or effectiveness measures. All of these topics are discussed in
greater detail later in this chapter.

The risk management approach shall also be addressed in the manage­
ment section. The topics that shall be addressed in the project plan in­
clude:

• Define the risk management approach.
• Identify the method of reporting and resolving risks as well as the dis­

tribution list.
• Define the criticality levels used to categorize risks.
• Define the tracking process and any tools that will be used.

Issue management, just like risk management, needs to be clearly articu­
lated in the plan. The details for how issues are communicated, resolved,
as well as who has the authority to close issues is essential to the success­
ful management of any V&V effort. This leads into the last topic of the
management section and that is the reporting requirements. The purpose
of the reporting requirements information is to communicate what is pro-

54 Chapter 2

duced by the V&V project and its format. The other critical piece of in­
formation regarding V&V reporting is the contents of the report. Clearly
identify what the contents of each of the reports are to contain and when
they will be produced.

The last topic of the project plan needs to address the specific V&V
tasks that are to be performed on the project. You also need to assure that
they do not contradict any of the information already presented in the plan
(e.g. master schedule). For each of the V&V tasks, the information in Ta­
ble 2.6 needs to be addressed.

Table 2.6. Topics to Be Addressed for Each V&V Task

Topic
Associated Requirement

Objectives or Rationale

Tools and Methods

Input

Scope

Output

Schedule

Resources
Risks and Assumptions

Effectiveness Profile

JDescrigtion
Identify the V&V requirement(s) that the task ful­
fills.
Identify the expected outcomes or explain how the
task fulfills the associated V&V requirement(s).
Describe the tools and/or methods that will be used
to perform the task.
Identify the required inputs for the task along with
whom or what will provide it and the required for­
mat of each input.
Identify the software components that will be as­
sessed by this task.
Identify the required outputs from each task, their
purpose, format, and recipients.
Identify the schedule for each task, establishing spe­
cific milestones for initiating and completing each
task.
Identify the resources needed to perform the task.
Identify any risks or assumptions and provide rec­
ommendations to eliminate or mitigate.
Identify the defect profile to which this task will be
assessed against.

Section 2.3 Managing the Plan

During implementation the management team has several tools at their
disposal to assure they meet their plans within the +10% and -5% margins
established at the onset of the project. The actual management of the pro­
ject takes on tasks such as planning, input analysis, risk management, issue
management, reporting, controlling the project, and change assessments.

Software Verification and Validation 55

As I have stated before, this book is not entirely focused on management
techniques. I simply discuss those techniques that I feel must be per­
formed if you want to be successful.

For example, planning has been discussed in the previous sections. The
one important point that I w îsh to make is that planning is not a one time
event and plans must be continuously assessed throughout the life of the
project.

Input analysis is also discussed in the previous sections and is important
when laying out plans. In order to plan effectively you must be aware of
the environment that you have to operate in. V&V must also understand
the type of artifacts as well as there maturity when deciding on their ap­
proaches.

Issue and risk management is discussed in subsequent sections. An ad­
ditional point that I would like to make in this section regarding issue
management is that issue resolution is extremely difficult to plan for. The
resolution of issues is difficult to plan as well as control. As such, I have
found it advantageous to build reserve into the schedule to cover an exten­
sive use of resources to resolve issues.

Reporting is discussed in various sections in the book, from the possible
organizational structures the V&V team may employ to the contents of the
V&V plan.

Control techniques are introduced in the following sections. The new
concepts that are discussed are effectiveness measures and control gates. I
have some concern if I don't discuss earned value management. Since it is
not a new technique I lessen the concern but not completely. Earned value
management has proven to be a very successful management tool in the
development community and has been successful in the V&V community
although in limited instances. Even though it is not a new concept I briefly
mention it in the trailing paragraphs.

Change assessment is a management task that has to be performed every
time the development project makes a change to any of their artifacts. Ei­
ther a change to an artifact that has already been analyzed by V&V or a
change to future artifacts, management has to understand what the change
impacts with respect to the V&V results and the V&V plans. It is possible
for the development project to change a requirement. Imagine a world
where requirements are not changed once they are baselined, pretty good
imagination if you were able to see it. As such, if a requirement changes
and the V&V team has already assessed the requirements and the require­
ment is in scope then management needs to understand whether or not
their previous results have been affected. You need to plan for these
changes. Just like issue management, changes to the development artifacts

56 Chapter 2

can wreak havoc on your V&V plans. These are those uncontrollable vari­
ables that everyone writes about and discusses.

I leave you now with a few thoughts on earned value. Consider a pro­
ject in which you are building brake pads for an automobile manufacturer.
Can you somehow put in place a measurement system that gives you the
insight that not only enables you to determine the current state of produc­
tion but will enable you to make predictions about the future production of
your brake pads? Does this sound to good to be true? Well it is and that is
all I want to say about earned value. I guess I'll retract that last statement
so that you'll read on.

Earned value is a tool, just a tool, and it is one that you must fully un­
derstand if you are going to use it. If you don't understand what it is and
how the numbers are generated then you can make some very serious mis­
takes, ill-informed decisions would soon follow. But when it is understood
it can be effectively applied to the V&V project which will allow man­
agement the insight into the current state of the analysis as well as predict
whether or not it is going to meet its plans. With enough granularity it will
even allow you to determine what the root causes of the problems are so
that effective remedies can be put in place.

I can not do earned value management enough justification with just a
few paragraphs nor could I if I devoted a section or even a chapter to it.
Entire books have been written on this management technique and I am
not about to recite everything they do. I refer you to the latest manage­
ment books that exist to teach the basics of earned value. What I will say
about earned-value management is that it can be used effectively on a
V&V project. Once the mentality of V&V becomes requirements driven
then earned-value can be used effective. Two things need to be taken into
consideration when applying earned-value to your project. First, you have
to be requirements driven. Your mentality has to become centered on the
fact that V&V produces something. And they do, just because they per­
form assessments does not indicate a level of effort. Performing an as­
sessment still results in a tangible product that can be measured and moni­
tored. The other thing to consider is the fact that V&V is totally dependent
on the developer's schedule. For example, V&V can establish a Budgeted
Cost of Work Scheduled (BCWS) for performing their interface analysis
tasks but if the developer is late in providing the interface requirements
then V&V is going to show a negative schedule variance. The insight into
these scenarios, which is common, would be meaningless. You know that
you are slipping your schedule if you haven't been given the required in­
put. This makes earned-value a re-planning exercise every time the devel­
oper's are late. I can't argue with these scenarios because I have seen
them happen to often. Although I will say that you do need to address

Software Verification and Validation 57

your plans if you can not meet your schedule. If eamed-value is deemed
nothing more than a re-planning exercise then you should take a hard look
at your management system. This would tell me that your management
system is not robust enough to incorporate changes and we all know that
projects will experience changes. A management approach as well as a
management system that can handle change will be successful. Ones that
are not, well then I understand the attitude they have towards earned-value.

Section 2.3.2 Effectiveness Measures

Another new concept introduced in this book has to deal with using ef­
fectiveness measures to manage the V&V tasks. The concept is not new to
the software engineering community; it is new to the V&V community.
One of the problems that haunt a V&V team is knowing when they are
done verifying and validating a system component. This is very similar to
the question "How do you know when you are done inspecting source
code?" There seems to be an effective approach to answering this ques­
tion. I say that it seems to be effective for two reasons; first I have tried
the approach a few times and it provided valuable insight and second, in­
dustry has tried the approach within the development organization and
published papers find it favorable.

The concept is based on Orthogonal Defect Classification (ODC) and
was introduced by IBM in the early 1970s (Fagan 1976). First we need to
discuss the act of modeling a process (a V&V task). No process can be
modeled as an observable and controllable system unless explicit in­
put/output or cause-and-effect relationships are established. When cause-
and-effect is recognized, though qualitatively, it is not abstracted to a level
from which it could graduate to engineering models. ODC bridges the
gaps between quantitative methods and qualitative analysis by bringing in
scientific methods that define a measurement system in an area that has
been historically ad hoc. It does better than raw counts of defects by using
the semantic information contained within.

Let's step back and make sure we understand the problem we are trying
to solve. As an example, consider a V&V team performing test analysis
on the project's test cases. The V&V team assesses the test cases to assure
that they are adequately covering the software requirements. When the
V&V team is finished there are several entities of knowledge that have
been generated. First, the V&V team has possibly identified issues with
the test cases. Second, the V&V team has possibly achieved their objec­
tives and third, the V&V team has gained valuable knowledge about the
system by itself. The challenge that management has is deciding whether

58 Chapter 2

or not the V&V team is done and their results complete. Can management
conclude that if the V&V team has met their objectives then they are done
with test analysis? If the V&V team have generated 50 issues is that
enough? To answer this, management needs a combination of techniques
that enables them to assess their own processes and determine the level of
quality that has been achieved when performing them.

Now let's get back to ODC and how it can be used as a management
tool. This may seem like a Quentin Tarantino movie, jumping back and
forth between scenarios but I find it important to make sure we were clear
with the problem that we are trying to solve. ODC exploits defects that
occur all the way through development cycle. It converts semantically rich
defect data into a few vital measurements on the product and process.
These measurements provide a firm footing upon which sophisticated
analysis and methodologies are developed. ODC's success illustrated that
a new class of methods can be developed that rely on semantic extraction
of information linking the qualitative aspects from root-cause analysis to
measurable computable aspects from statistical defect models (Chillarege
1996). The semantic extraction is done via classification. The objectives
are to contrast the classical methods of growth modeling with what can be
achieved via semantic extraction from defects.

One approach that V&V could take is a reliability approach and model
the growth rate of defects they uncover. Once the growth curve has
seemed to stabilize, or reach a plateau, then in combination with the as­
sessment on the quality of the test cases one can determine whether or not
the system is going to experience any more defects. Meaning, the V&V
team could look for more defects but the growth model indicates that no
more would be found that would be beneficial for the resources expended.
Consider the example growth model depicted in Figure 2.12. Ideally the
graph should plateau, signifying a decreasing number of defects being de­
tected and promising fewer defects in the field. The sudden increase in the
defect rate, during the time period of 900 days, identifies the criticality of
the situation. Classical growth curve modeling techniques would recog­
nize this trend and identify it as a problem. However, the problem with
this is that it would be recognized too late to take all but some desperate
reactive measures, unless the modeling technique used some comparison
function that determined when the slope of the line deviates from some
predetermined stability value. However, employing a technique such as
that would only raise a flag, it would not identify the potential cause of the
problem nor would it motivate corrective measures.

Software Verification and Validation 59

900
800
700
600
500
400
300
200
100
0

Cumulative Defects versus Time

200 400 600 800 1000 1200 1400

Time (Days)

Fig. 2.12. Example growth model for defects experienced during the development
life cycle

ODC's classification system relies on several attributes but the two
used by the V&V team could be defect type and defect trigger. The V&V
team would need to categorize the defects they find using the class types
defined in Table 2.7.

Table 2.7. Defect Types for a V&V project.

Defect Type
Function

Assignment

Interface

Checking

Description
The error requires a formal change to
the software artifact, as it affects sig­
nificant capability.
Value(s) assigned incorrectly or not as­
signed at all.

Communication problems between
modules, components, device drivers,
objects, functions vi macros, call
statements, control blocks, or parame­
ter lists.
Errors caused by missing or incorrect
validation of parameters or data in con­
ditional statements. Also refers to test
cases that do not validate certain meas­
ures.

Example
Requirements for a sig­
nificant subsystem are
missing
Internal variable or vari­
able within a control
block did not have correct
value, or did not have any
value at all
The interface specifies a
pointer to a number, but
the implementation is ex­
pecting a pointer to a
character
Test case doesn't check
the frequency rate only
the message content

60 Chapter 2

Timing Necessary serialization of shared re- A hierarchical locking
source was missing, the wrong resourcescheme is in use, but the
was serialized, or the wrong serializa- code failed to acquire the
tion technique was employed. locks in the prescribed se­

quence.
Relationship Problems related to associations among Traceability from re-

procedures, data structures, objects, re- quirements to test is in er-
quirements, and tests. ror or missing.

Build Errors that occur due to mistakes in li- The test environment is
brary systems, management of changes,using the wrong tables
or version control. during flight testing

Documentation Information within documentation is Function does not have
inaccurate or missing and requires in­
formation to be added or changed.

Algorithm

Project

Verification
Method

sufficient commenting or
it does not describe the
code accurately.

Efficiency or correctness problems that The algorithm for search-
affect the task and can be fixed by ing a chain of control
(re)implementing an algorithm or local blocks was corrected to
data structure without the need for re- use a linear-linked list in-
questing a design change. Problem in stead of a circular-linked
the test procedure where it doesn't fully list,
verify the requirement
Requires revisiting the schedule, re- Development teams are
sources, and/or number of reviews. being tasked beyond their

capability
The identified methods of verification The Test Plan states that
are not explained or are not appropriate testing and demonstration
for the situation. are used to verify a cer­

tain requirement and
analysis shows that both
methods are not required.

The classes in Table 2.7 capture the essence of what was fixed.
Semantically it represents the nature of the work necessary to fix the
defect. As such, a V&V analyst when she finds an issue would then need
to wait and see how the developer's fixed the issue. Or she could go ahead
and make the classification based on what she thinks it would take to fix
the issue. A note to the reader is that these defect types were synthesized
from published papers and two projects that I used the technique on.
These types may need to be modified for your project.

In addition to assigning a defect to a defect type class, V&V will also
need to assign the same defect to a defect trigger class. The trigger is what
facilitated the defect to surface. Ideally the trigger represents the V&V
task being performed when the defect was found. The three classes of

Software Verification and Validation 61

triggers defined by ODC are inspection, unit/function test, and system test.
There are sub-classes within each of these that helps associate the activity
the individual was doing to surface the defect. What is important at this
point in time is to clearly define the V&V tasks for your organization. I
am not going to regurgitate the triggers that ODC defines simply because
they will more than likely not have any meaning to your organization. The
defect trigger classes that your V&V organization will come up with will
follow from the V&V requirements defined in this book.

Having these two separate classification schemes are used collectively
to point to the part of the process that needs attention, much like character­
izing a point in a Cartesian system of orthogonal axes by its x, y, and z co­
ordinates (Chillarege 1996). This knowledge is also used to infer whether
or not the V&V team has found what they thought they should have found.
It is by no means binary and performed in vacuum. So let me reiterate that
last line for management folks reading this book. These are simply indica­
tors and it will require further exploration to reveal the root cause.

Once the defects are placed in their appropriate classes, we examine
how the distribution contributed by defects changes as a function of time.
Consider the example in Figure 2.13, which shows the proportion of de­
fects that have the defect type "Function" during each development period.
This example was taken from (Chillarege 1996). It simply shows when the
development project identified defects of the type function. The early pe­
riods of development, periods 0-2 in this example, are characterized by
larger amounts of design, whereas the latter parts, periods 2-3.5, are char­
acterized by greater amounts of implementation and system test. Thus, the
expectation would be that the proportion of defects of type function would
be initially larger and smaller later. However, in this example we are not
experiencing this. It is showing that we are revealing more function de­
fects as we age in the development life cycle, hence the crisis. Instead of
relying on raw defect counts, we could identify possible reasons for this
phenomenon and apply corrective measures now, not later.

62 Chapter 2

Percent of Function Defects versus Development Period

60

^ 40
D
^ 30

I 20
H 10

0.5 1 15 2 2.5

Development Period

3.5

Fig. 2.13. Proportion of Function defect types during development.

The V&V team can use the same philosophy as development. If the
V&V team experienced a similar defect distribution as in Figure 2.13, then
management should assess ŵ hy the V&V team did not find those design­
like issues earlier on. Management could also make a decision to not con­
tinue on and reassess whether or not their objectives were met when as­
sessing the design artifacts. This example showed an "after-the-fact" type
of assessment and that is not what I am advocating here. I simply used the
example to try to convey the concept of using defect type distributions to
gauge whether or not the V&V team found what they thought they should
find. The actual implementation of this technique is performed in step
with the V&V task so that remedies can be deployed as potential problems
arise.

The defect type's granularity is such that the classifications apply to a
defect found in any phase of the development process, yet can be associ­
ated with a few specific activities in a particular process. For example, a
typical association that occurs is to tie the functional defect type to the de­
sign process, thus no matter where the defect is found, if the distribution
peaks, it is indicative of an activity that escaped the design phase. Simi­
larly, an assignment or checking defect may be associated with the coding
phase and is expected to be weeded out with code inspections and unit-test
type activities. The previous example illustrated the use of qualitative in­
formation in defects converted to a quantitative measure to make earlier
predictions than more traditional quantitative methods. In addition, it pro-

Software Verification and Validation 63

vides clues to the reasons, which are translatable to recommendations for
action.

The elements belonging to the set of defect types are different enough
that they span the development process. Given this set of defect types,
there are several opportunities for determining effectiveness based on the
profiles of the defect type distribution. V&V teams can exploit the defect
type by generating the distribution of the defect types in each phase of
V&V. Given a V&V phase one can describe the expected behavior. For
instance, as I have stated previously the function defects should be found
early in the process and ideally very few at system test. On the other hand,
timing/serialization defects are found during system test. Assignment and
interface defects can have profiles that peak at unit-test and integration
test, respectively. Figure 2.14 is an example of an expected defect type
distribution that could be used to gauge the results of a V&V task.

bsue Typ©

Function
Interface
Checkincf
As^qnmgnt
Relationship^
Timing
Alqorithni
Build
Documentation
Project
Verification Method

ReqM^arii^ls

X
X

X
X

X

X

HtO

X

X
X

t l D

X

X

Code

X
X
X

X

Unit
Test

X
X

X

X

X

System |
Test-

X 1
X 1

X
X

Fig. 2.14. Example Defect Type Distribution

The concept is to examine the normalized distribution of all defects
found while performing a V&V task against what the process should
achieve. This instrument will allow us to measure the progress of a prod­
uct as well as the effectiveness of the analysis through the process. A de­
parture from the expected distribution or a change from the expected trend
identifies potential problems and recommends possible corrective action.

I have applied this technique during one of my V&V projects that I was
managing in the past. The measurements were taken while we were per­
forming test analysis in which test artifacts were being inspected for de­
fects. Development was in the system-testing phase when we came on
board, so no prior V&V tasks had been performed. We inspected software
test plans, test procedures, test cases, test scripts, and requirement specifi­
cations and our defect type classes were used to characterize the defects
that surfaced. We used the defect type distribution profile as depicted in
Figure 2.14 and prior to performing our V&V task the team had concurred

64 Chapter 2

that the majority of the defects that we should find should be of type Inter­
face. The second type should be checking, and the third type should be
timing. We also felt that we may find some algorithm type defects simply
because the actual test cases were being revealed for the first time and had
not gone through any type of inspection. Since they were just being de­
veloped we felt we should uncover some problems on how well the re­
quirements were being logically tested.

As we performed our analysis we began categorizing the defects that we
found. Prior to completing the analysis our defect distribution was that
depicted in Figure 2.15.

AA -,

70 -
m

1 50-
M S 40-

1 30-
1 20-
=̂ 10-

A
U H

Defect Types Distribution for Test Analysis

. . i~n
Function Documentation Relationship Algorithm

Defect Type

Fig. 2.15. Defect Type Distribution for Test Analysis

1.35% of the defects were of type function. Although it is a relatively
small amount, it shows that these defects escaped the requirements and de­
sign phases and laid dormant until System Testing. 5.41% of the defects
were of type documentation. This came as no surprise since we were in­
specting documents for clarity and consistency. However, they should not
have escaped the requirements and design phases since they were test
plans and should have already been inspected. 44.59% of the defects were
of type relationship, which are associated with the traceability of require­
ments to test procedures/cases and relationship characteristics between test
plans and test procedures. Full coverage, as well as consistent flow be­
tween test documentation should have been well established before System
Testing. 48.65% of the defects were of type algorithm, which is associated
with the logic contained within the test cases that determines whether the
requirements are fully, partially, or not at all verified by the test case.

Software Verification and Validation 65

These types of defects do not normally surface, if one is inspecting test ar­
tifacts, until unit test, function test, or System Test. Hence, the amount of
defects that surfaced is indicative of the expected defect profile.

The concern was that we had deviated drastically from our expected de­
fect profile. We met our schedule, came in on cost, and we had assessed
all of the test cases, plans, etcetera. Now we were concerned that our
analysis may not have been as best as we had intentionally hoped for. The
lack of interface type defects, checking type defects, and timing type de­
fects is what we were questioning.

First, we held a team meeting and discussed the possibilities. This be­
ing one of my first projects I found it extremely beneficial to hear the other
seasoned analysts discuss how they assessed test cases for interface type
defects. It quickly occurred to me that I did not take into consideration
anything that they had mentioned. As we discussed this as a team, we
found that the lack of direction on "How To" assess test cases that verify
interfaces was lacking. That systems perspective was what I was lacking,
as well as a couple others on the team. Our approaches varied and we
were able to regroup and look at the test cases that I was responsible for
looking at in the first place. This may come as a surprise to some that I am
writing about my own failures but I am a firm believer that we learn as
much from our mistakes as we do our failures. As such, it is okay to admit
when you think or you know that you have made a mistake. It is not okay
to cover it up. Since we had assessed our performance early on, we were
able to readdress the test cases and still meet our schedule.

Checking type defects are associated with test cases verifying absolute
measures defined in the requirements. There are a few possible reasons we
did not find any defects of this type: If the requirements never stated any
absolute measures in the specification then there would be no need to test
them. Maybe our team didn't have the right skill mix, like I discussed in
the previous paragraph, or maybe the right skill mix was there but the team
deviated from their original focus. Lastly, maybe the tests covered every­
thing they needed to and there weren't any defects to find.

We went back to the requirement specification and verified that the re­
quirements do contain some absolute measures. So the first reason could
be thrown out, as a result of the team meeting I discussed earlier we also
concurred that we all took a very similar approach to assessing the test
cases. That was when it became evident want went wrong, we all took a
similar approach but the approach had deviated from our original intent.

What had occurred was that our V&V plans did not specifically detail
the objectives for our test analysis activities. As such, our assessment of
the test cases was ad hoc. It was successful in our eyes simply because the
objectives were not very clear, it's hard to fail when the objectives are not

66 Chapter 2

clear. The testing of exact measures had simply slipped through our analy­
sis "checklist", I quoted the word checklist because we didn't actually use
a checklist. Even though there were a few requirements that stated abso­
lute measures, our team had simply over looked them.

The last concern was that we had not found any timing type defects.
After our team meeting we were confident that we had covered the timing
properties stated in the requirements. It just so happened that the test cases
also covered the timing properties and there were no defects to be found.

This was a perfect example of the success for in-process measurement.
Before we closed out this task we refocused our analysis and made sure the
test cases verified the interfaces as well as absolute measures defined in
the requirements. The biggest lesson learned was that which spawned the
writing of this book. As you read the previous paragraphs you may have
been distraught with the facts that our V&V approaches were very ad hoc
and totally dependent on the people performing the analysis. It was
quickly realized that more formal definitions for performing V&V were
needed. That is why I advocate defining, very clearly, what the objectives
are BEFORE performing the task as well as laying out the approach so that
all team members are very clear in knowing what it is they are expected to
achieve as well as how they are to go about it.

This technique was beneficial in the two cases that I applied it. Even
though I lack an exhaustive set of test data for it, I believe that coupled
with standard management techniques it will provide additional insight
into the quality of the V&V analysis that is being performed.

Section 2.3.3 Control Gates

It is absurd to think that only the development projects should have con­
trol gates. As a project manager, we must be just as rigorous when manag­
ing a V&V project as we are when managing a development project. Con­
trol gates are usually established at logical places in the life-cycle in order
to assure the engineering aspects of the system being developed are matur­
ing as expected. For example, the development team must go through a
design review in order to show that they have a stable design that meets
the requirements. It is the intent of the design review to enable the devel­
opment team to begin implementing the design. Why is it so ludicrous to
have the V&V team go through similar gates? For example, when the
V&V team indicates they have completed design analysis, I feel they
should show that they have completed all of their requirements for design
analysis, that they have all tools in place to begin code analysis, all per-

Software Verification and Validation 67

sonnel are adequately trained, all risks have been managed adequately and
the necessary issues have been resolved.

This is a completely new idea for V&V projects and I expect it to be a
difficult one to start. I do not understand why it would be difficult to ac­
cept but I do understand that implementing this new concept would proba­
bly receive some push back, simply because it is a change in the way
things are normally conducted.

The life cycle for a V&V project is modeled after the one chosen for the
development project to assure timely feed back of the V&V results. No
matter the life cycle chosen and disregarding the temporal aspects of the
V&V phases (e.g. ignoring the start and end times for the tasks) control
gates are established prior to the completion of these major V&V phases:

• Requirements Analysis
• Design Analysis
• Implementation Analysis
• Test Analysis

Prior to the completion of each of these phases, the control gates are
used as critical decision points in the life of the V&V project. The control
gates are a management function and serve as an excellent tool to make
intelligent decisions. They are represented by formal reviews that are held
by a review panel comprised of either management personnel separate
from the V&V team, management from the V&V team, or both. For the
current phase of the life-cycle, the review shall address the topics depicted
in Figure 2.16.

Review Topic
Objectives

issues

Risks

Effectiveness Models

Results

Lessons learne<i
Schedule
Cost

Current V^V Task i
Description

Have the objectives been met?
Have the necessary issues been communicated to the pfojecf^
H:sm th§ mcm%m issues b^m resolved'?
Am th^m plans \t\ place to msolve the issues in an adequate ttrnt^frame?
Havt th0 necessary nsNs been mana^e<l a^iequately?
What were the results of the effectiveness mo<lels?
Are the results acceptable?
If the results are ntiX acceptable, v^hai are the actions planned to be taken?
Hdm tt">e results of the V&V task been communicated to ttie project?
Ho^ did the project respond or use the VB^V results'?
H^^ tt^ere been any lessons learned documented?
Hm^ you met your planned schedule?
Have you met your planned budget?

Fig. 2.16. Review Topics for Current V&V phase.

The topics depicted in Figure 2.16 can be used as a checklist by the
V&V project as well as the review panel. For example, for the current

68 Chapter 2

V&V phase the V&V project shall address the objectives and requirements
that were to be met at completion of the phase and whether or not they
were.

For the upcoming phase that the V&V team will perform, the review
shall address the topics the depicted in Figure 2.17.

R^aw Topic
iObjecitvts

i Methods

iTVainini
ITools

iAitlfacIs

1 Issues

1 Risks
iEisct i^mss Models
lUssoRs Uam^d
ISeheilylt
i€«St:

Upcor«inp V W Task
D«scri}ticifi

H3¥e th« obl^ctwes been cleady clafined?
kism Ihe mslhods \mm utearty <ielin®dt
km Iha mtthsds acceptiWe to meet the «bj8clivi«?
Are Ihe apprsprials V W Imm mtmb^fs adgfqyately trained in Ihe methods?
^ e the necessary tools installed. co«fiiUfed> m4 m a # for operation?
Hme xfm ngeessary davtlef^ment srtlfscts bmn made a^^jlaNe to the V t V team?
Are the Mifacts in the w^m^ format and matyre enough to accompiish the obl«ctiws?
What issues are feeing earned forward?
Ham ym planned to resolve any issues dyring tha opcomini task?
What risks art beinf mana^^d for th« upcoming t isk?
What are the effecit^ness models planned to be tised for the tipcominp task?
Whal: lessons learned have you used in planning for the upcoming task?
fa the planned schedule ade^watt la meet Ihe oi^actl^es?
te the plannsd bydfssl s^^qusts to meet the ofeie<jtiygs?

Fig. 2.17. Review Topics for Upcoming V&V phase.

Just like in Figure 2.16, the topics depicted in Figure 2.17 can be used as
a checklist by the V&V project as well as the review panel. It is essential
that these topics are addressed prior to the start of the V&V phase, it is
management's responsibility to assure the success of the V&V phase and
these topics serve as a guide to enable that success.

These reviews shall be planned for and integrated into the overall esti­
mate for the V&V project. As I suggested in the preliminary paragraphs,
the concept for V&V projects to go through reviews will not be accepted
with open arms. As such, V&V management should at least informally
address these topics within their team to assure they are staying on track
and meeting the needs of the overall V&V project.

Section 2.4 Risk IVIanagement

The future is our concern and management can not plan a completely
risk free project. This means the project has to continuously identify and
manage the potential problems the team may experience. Risk manage­
ment is one of the essential tools that management has, next to leadership.

Formally defined, risk is the potential for the realization of unwanted
negative consequences of an event (Dorofee et al). They can be risks as­
sociated with the project's schedule, the project's budget, or with the tech­
nical quality of the project's results. It is a potential problem that the V&V

Software Verification and Validation 69

team may experience. It may or may not happen, but it is advantageous
for the V&V team to at least plan for it to happen as well as plan ways to
avoid it happening. A risk has two attributes that you must manage. The
first is the likelihood that the risk will become a realization. The second is
the impact the risk will have if it does become a realization, called conse­
quence. Figure 2.18 identifies these attributes and they are explained in
more detail in Section 2.4.2.

Risk alv/ays invoh/es
the LIKELIHOOD
that an unaesired
event will occur

Risk shall consider
th« CONSEQUENCE
shoyld fh« undtslred

mmi mmm

Qualiiatwe or
Quanliiativs

Qyalitati¥e or
Oyantitatve

Risk = Likelihood x Consequence
J

Fig. 2.18. Attributes of a Risk

Everyone on the project participates in risk management. All team
members have a voice and it is essential that they all are heard. It is one of
the basic principles often overlooked. Not including all team members or
not listening to what they have to say is one of the common pitfalls experi­
enced on projects today. This mentality breeds the "fire fighters" approach
to performing V&V. The fire fighting approach refers to not doing any­
thing until something goes wrong. In the past, the fire fighting mentality
was accepted and even rewarded. How many projects have you been on
when things went awry and management brought in outside people to save
the day? Then they reward them! Completely foolish in my opinion and
unfortunately it happens a lot. If only they would have listened and miti­
gated the potential problems the project would not have had to enter this
crisis management mode. Now is the time for this to change and you as
the leader can make this happen.

The good news is that we don't have to introduce new concepts. Risk
management has been around for some time; the problem is that we have

70 Chapter 2

to actually implement it. Something that may not be as familiar is that on
a V&V project, the V&V team can identify two kinds of risks. The first
are risks associated with the V&V project (e.g. no team members have
been trained on the new V&V method) and the second are risks associated
with the development project (e.g. given that the software design has not
been baselined and the project has begun implementation there is a con­
cern that the source code will have to be drastically changed when the de­
sign is baselined). Risks against the development project are usually sub­
mitted to the developer's risk management system. Only in the event that
the development team does not accept the V&V authored risk would the
V&V team track it and resolve it.

Risk management incorporates a series of steps that are continuously
performed during the life of the project to help the V&V team manage the
uncertainty the future brings. Figure 2.19 identifies the series of steps that
represent risk management.

Search for and specify risks befora they become
pfdjiems

Concert ftsk <l9l« into {itcision moiling intomiiHton

Translate risk Intemaliori into dedsions are! mitigrrtitsg
actions and implsment UKSSB seficms

Monitor risk Indicators arid miligalion actions

Correct lor dsvtalifsrts from the risk miBgallon plans

Fig. 2.19. Risk Management Steps

As stated before, risks associated with the development project normally
go through the identify step and analyze step and then they are submitted
to the developer's risk management system. So the remaining steps are not
applicable to those kinds of risks, since the V&V team can not develop
plans that the developers will execute.

Sections 2.4.1 through 2.4.5 introduce the sequence of steps by discuss­
ing its purpose, those responsible for the step, methods and tools for exe­
cuting the step, the output of the step, and an example. Section 2.4.6 in­
troduces the risk management plan and its contents.

Software Verification and Validation 71

Section 2.4.1 Identify

The identification step is a systematic attempt to specify the concerns to
the V&V project as well as development project. The purpose of this step
is to search for and specify risks before they become problems. All team
members actively participate in this step and there are various methods and
tools to help in the identification of risks. Table 2.8 lists some of them.

Table 2.8. Methods and Tools for the Identification of Risks

Method/Tool Description
Brainstorming All team members meet to discuss the potential problems

the project may experience
Risk Item Checklist Comprehensive checklists focused on general risks that

may be applicable (e.g. budget risks, schedule risks)
Lessons Learned Lessons learned database is analyzed for relevant past

problems that may be experienced on the current project
Individual Uncertain- Individual team members may have uncertainties about the
ties project that must be considered and included.
Taxonomy-Based Similar to a checklist except that TBQ attempts to identify
Questionnaire (TBQ) risks by analyzing the answers to specific questions (e.g.

are the V&V requirements stable? Answering this ques­
tion No indicates that the V&V team is trying to hit a mov­
ing target and their success is at risk).

V&V Analysis Analysis on the development artifacts may reveal specific
issues but several of the same issue may indicate a risk or
an issue that can not be proven with 100% certainty may
be captured as a risk.

As an example, during the planning phase for a V&V project manage­
ment decided to gather some of the team members together and conduct a
brainstorming session regarding the potential problems they may face.
One of the senior members on the team discusses a problem she has ex­
perienced on other V&V projects with the same development organization.
The problem has to do with the fact that on the other V&V projects, the
same developer had continuously slipped their schedule and delivered the
software artifacts late. Management decided to capture this as a risk to the
current V&V project since the V&V schedule was totally dependent on the
developer's schedule.

The output of the identification step is a risk statement and risk descrip­
tion. The risk statement is structured and has two attributes, the first is the
Hst of facts and the second is the consequence of those facts, (see Eq. 2.1)

72 Chapter 2

Given that (list of facts) there is a concern that (consequence) (2.1)

Using equation 2.1 and the example above, the risk statement would be;
Given that the V&V schedule is totally dependent on the developer's de­
livery of software artifacts there is a concern that the V&V project will fall
behind schedule if the development artifacts are delivered late.

The second output of this step is a risk description. The risk description
provides additional detail regarding the risk. It may explain the facts in
more detail or it may provide the analysis conducted that supports the risk.
The description takes the place of the brevity contained in the risk state­
ment and enables the next step to be conducted with better certainty.

Section 2.4.2 Analyze

The analysis step examines each risk in detail to determine the extent of
the risks, how they relate to each other, and which ones are the most im­
portant. The purpose is to convert the risk data into decision making in­
formation.

During this step, the risk exposure is determined and the two attributes
for risks are generated, the likelihood and consequence, (see Eq. 2.2) This
will give a better understanding of the risk and supplies the necessary in­
formation for decisions to be made. Management is responsible for assur­
ing that the step is performed but they will call on the subject matter ex­
perts to provide the values for the attributes. The values for the attributes
can be qualitative or quantitative; in general it requires a subjective judg­
ment to be made. Three methods are provided as an example in Table 2.9.

Risk = Likelihood * Consequence (2.2)

Table 2.9. Risk Analysis Methods

Method
3-level

4-level

n-level

Consequence
High
Moderate
Low
Catastrophic
Critical
Marginal
Negligible
Project defined

Likelihood
High
Moderate
Low
Very high
Likely
Not likely
Impossible
Proj ect defined

Software Verification and Validation 73

As stated before, assigning attribute values takes engineering judgment
that is best performed by the team's subject matter experts. Table 2.10
provides some descriptions for the consequence attribute values for the 4-
level method identified in Table 2.9. These descriptions differ from those
normally documented simply because those that are somewhat standard­
ized are relevant to development projects. The risks that we are concerned
with are relevant to the V&V project. If the V&V team is authoring a risk
against the development project then they will need to use the method em­
ployed by the development project.

Table 2.10. Consequence Descriptions

Consequence Description
Catastrophic Loss of human life, extensive damage to system, extensive slip to

the critical path, extensive financial overrun or social loss, or
complete failure to meet requirements.

Critical Major or permanent injury, major damage to system, major slip
to the critical path, major financial overrun or social loss, or ma­
jor impact to requirements.

Marginal Severe injury or illness, degradation of system, non-critical path
tasks will overrun, some financial or social loss, or some re­
quirements won't be met.

Negligible Minor inju^ or illness, minor impact on system performance.

As an example, I will use the risk from section 2.4.1 which was:

Given that the V&V schedule is totally dependent on the developer's
delivery of software artifacts there is a concern that the V&V project will
fall behind schedule if the development artifacts are delivered late.

Using the descriptions from Table 2.10 I worked with the engineer that
had raised this risk and we concluded that the consequence value was criti­
cal since there would be a major slip to the tasks on the critical path. It
wouldn't have been an extensive slip because not all of the tasks that were
affected by this risk were on the critical path. The likelihood that this risk
would occur was scored as likely since every project our subject matter
experts worked on the same developer was late in delivering the software
artifacts. The reason it was not scored very high was that our experts had
not worked on every project that the development organization was in­
volved in, only those that had V&V projects. Our attributes for this risk
then takes the form as shown in equation 2.3.

Risk 0001 = likely * critical (2.3)

74 Chapter 2

The risk exposure is simply a way to categorize the risk with respect to
the likeHhood and consequence. You basically assign the risk to one of
four categories, if you use the 4-level method. The four categories are de­
termined at the start of the V&V project. An example is given in Table
2.11.

Table 2.11. Risk Exposure Table

VeQ; High Likely Not Likely Impossible
Catastrophic ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Critical ^^^^^^BHlllllllllliliiB^
Marginal | B i l H i j | | | | ^ None
Negligible^__^^^^^^^^^^S|||^

For our example risk, which was scored likely and critical (see Eq. 2.3X
the risk exposure would be Moderate. So what does this all mean? Re­
member, the purpose of the analyze step is to convert risk data into deci­
sion making information. The decision making information that was gen­
erated are the attributes and the risk exposure. These will then serve,
especially the risk exposure, the next step in the process, which is plan­
ning.

Section 2.4.3 Plan

The planning step is the process of deciding what, if anything should be
done about a risk or set of related risks. It translates the risk information
into decisions and mitigating actions and implements those actions. The
project manager for the V&V team is responsible for the planning step,
keeping in mind that team members may be assigned to take action on spe­
cific risks.

There are four possible actions that can be taken for a risk; research, ac­
cept, mitigate, and watch. Figure 2.20 presents a decision flow diagram to
help identify which action should be taken.

Software Verification and Validation 75

Risk Stitsmtnt
Risk Description
Risk Attribulf»
RIsfc Exposurt

MUlgtlt

Fig. 2.20. Decision Flow for Assigning Risli Action

Regardless of the action taken, an action plan shall be established for
each risk. If the action results in further research to be conducted then a
research plan is established. If the action is to accept the risk then the ac­
ceptance rationale is documented as the action plan. If the action is to
watch the risk then tracking requirements are documented as the action
plan. Tracking requirements serve as triggering mechanisms in the event
the risk changes or some other actions that serve to only monitor the risk in
the event it changes. If the action is to mitigate the risk then a mitigation
plan is developed and it serves as the action plan. The mitigation plan
shall identify the actions to be taken, the due dates for the actions, those
responsible for implementing the actions and the resources required.

For our example risk previously used, we would use the decision flow
diagram to determine which action should be taken. There are two possi­
ble options, we could accept the risk since there really is nothing we can

76 Chapter 2

do to help the developers meet their schedule or we could mitigate the risk.
I am of the opinion that for us to accept this risk would be the same as tak­
ing the fire fighting mentality, do nothing until the developers fall behind
schedule.

I would choose to mitigate this risk. I would establish a mitigation plan
that assigns actions to those responsible for establishing the communica­
tion channels between the developers and the V&V team. I would task
them to proactively keep status on those development artifacts associated
with the V&V tasks on the critical path. Using those status checks I would
assign my subject matter experts with assessing whether or not our V&V
team required the formal deUvery of the development artifact or if a draft
version could be used. It has been my experience that one main reason the
developers have failed to deliver artifacts on time is because of the for­
malities associated with delivering final products. If our V&V team could
achieve their objectives with a draft version of the artifacts and we could
acquire them on time then we could avoid the latency experienced with de­
livery.

Section 2.4.4 Track

The tracking step is the process in which risk status data are acquired,
compiled, and reported to the team as a whole. The purpose is to monitor
the risk indicators, research plans and results and mitigation actions. It
will also reassess the acceptance rationale to determine whether or not it is
still valid. The project manager is responsible for this step as well as any
team member assigned to the actions.

One method for implementing this step would be to conduct a monthly
meeting where all risks are reviewed. Another approach would be to de­
fine the frequency of review based on the type of the action plan. If the ac­
tion plan was to watch or accept the risk, then a monthly reassessment may
be appropriate. If the action plan was to research the risk then once more
information becomes available and a better understanding is obtained then
a special meeting for the particular risk may be held. If the action plan
was to mitigate the risk then once the actions defined in the mitigation plan
are completed then the risk can be reassessed based on the results of the
actions.

For our example above, the action was to mitigate. I would conduct
monthly meetings that specifically addressed the particular risk. I would
then use that meeting to assess whether or not the mitigation plan needs to
be modified. Most of the time, the tracking step can be rolled up with the
normal status meetings that management will hold on a V&V project. It is

Software Verification and Validation 11

essential that if this step is rolled up into a standing management meeting
that there is ample time allocated to reviewing risks.

Section 2.4.5 Control

The control step is the process that we have been leading up towards.
All along we have been generating data to support the task of making in­
formed decisions. The control step is just that, it is where the final deci­
sions are made by taking the tracking status reports for the risks and decid­
ing what to do with the risks based on the reported data.

Management has the primary responsibility but they will require feed­
back from all team members. During this step management will decide to
close risks, develop contingency plans, modify action plans, or continue
tracking and controlling.

It is essential that all information is communicated to all team members
and the rationale for the decision made available. That is not to imply that
management must have the entire team member's approval, it simply
means that open communication is necessary to have a successful risk
management strategy.

Section 2.4.6 Risk Management Plan

The Risk Management Plan documents the processes, approach, roles
and responsibilities and rules of operation that will be followed on the
V&V project. It can be integrated into the overall V&V project plan or
stand alone. Regardless of its location, it shall at least contain the follow­
ing:

• Overview
• Organization
• Risk Management Processes
• Communication
• Resources and Schedule
• Database for Risks

The overview section shall address the purpose and scope for the V&V
risk management approach. It shall also identify all external references
that have been used to develop the plan as well as those that may be used
during the implementation of the plan. The last item of information that
must be presented are the assumptions or constraints that have been used
in developing the plan.

78 Chapter 2

The organization section identifies the V&V project organization and
those responsible for the risk management processes. Their roles must be
defined and their relationship within the organization needs to be estab­
lished. A key item of information that is often left out of the risk man­
agement plan is the identification of those that have the authority to make
decisions. Make this very clear in the plan as well as during implementa­
tion.

The risk management processes section describes all the activities and
how they are related. It describes the required procedures for each of the
risk management steps and the methods to be used. It shall also describe
any tools that will be used and the metrics collected that will enable the
improvement of the risk management approach.

The communication section establishes how risks are to be reported
among the team as well as externally. Reporting formats are established
and frequency of communication is scheduled.

The resources and schedule section shall identify when the risk man­
agement activities are carried out. In addition, this is where the amount of
resources is identified that is required for the implementation of the plan.

One of the last items that have to be included in the plan is the location
and the use of the risk management tool that will be used to maintain and
manage the list of risks identified. There are numerous tools that exist to­
day, from the normal spreadsheet models to online databases. I would ad­
vocate the use of the more robust online databases. These tend to be more
structured and centered on a formal process. Using a spreadsheet enables
shortcuts to be taken as well as risks to be deleted. In this day of advanced
technology, obtaining a tool devoted to risk management is not difficult.

Section 2.5 Communication Structures

This section of the book discusses communication strategies and
organizational structures that the V&V project may assume.
Communication during the life of the V&V project is essential. Not only
is it essential to communicate amongst the team it is essential that all
stakeholders receive the information they need for the success of the V&V
project. The way the V&V team is organized will influence the
communication paths that are established. There are three basic
organizational models for a V&V team:

• Embedded
• Internal

Software Verification and Validation 79

Independent

An embedded V&V team is one in whicli the team members are also
members of the development organization. They are a component of the
development team. The V&V engineers basically have two
responsibilities. Their first responsibility is to that of the development
team and they must fullfill their engineering duties. Their second
responsibility is to that of the V&V team. Normally the development
engineers spend some ratio of work hours devoted to their seperate
responsibilities (e.g. 70% development and 30% V&V). The project
manager for the software development project normally serves as the V&V
project manager as well. Figure 2.21 shows an embedded V&V team and
the flow of information.

Customer

S:a:u5 Repors
Teĉ nk;Hl Deliverables

i
Development
Organization

Development
Team

Aii^ys^ R»$ute

-Issue Resdmion- V&V Team

Fig. 2.21. Information Flow for an Embedded V&V Team

An embedded V&V team has one informal communication channel and
it is between the V&V team members and their colleagues on the
development team. V&V engineers perform analysis on development
artifacts that they have not engineered themselves and provide results to
the team in general and try to resolve any issues within the development
team. Their communication with the customer is normally rolled up
within the status reports and formal reviews conducted during the
development life-cycle.

80 Chapter 2

An embedded V&V team is commonly found on smaller projects with
smaller project budgets. The following rules must be followed to have a
successful embedded V&V team:

• The development engineers and V&V engineers must work flawlessly
as a team. This means they have to be acceptable to the issues raised
and have the willingness to do the right thing.

• The V&V engineers must be steadfast to not perform V&V on the
engineering artifacts they develop.

• The V&V engineers must have a willingness to thoroughly analyze their
colleague's work.

• The project manager can not be schedule and cost driven. Their limited
resources demand a solid issue tracking system and risk management
approach.

An internal V&V team is depicted in Figure 2.22. This organization has
a dedicated quality assurance group that may have its own resources,
which the V&V engineers would not have to serve on the development
team. Informal issue resolution takes place between the V&V engineers
and the development engineers. Resolution of all issues is attempted at the
lowest level before they are raised higher. Formal issue resolution would
then take place between the heads of the organizations for those issues that
can not be resolved at the development level. There is still one
communication channell between the development organization and the
customer.

Software Verification and Validation 81

Customer

Sunu5 Reports
Techrical Deli

DovQjgpntent
Ortjanizatiofi

Enginooring
Organijotion

Quality
Assurance

Organization

Development
Team

^ ~ issue —H
ResoKj'Jo-'i

V&V Team

Fig. 2.22. Information Flow for an Internal V&V Team

Some advantages and disadvantages to this type of model are:
• Since the V&V engineers are not part of the development team they

devote all of their time to the assurance of the system software.
• Since the V&V engineers are not part of the development team it can

create difficult working relations between the two teams. Serious at­
tention has to be given to establishing and maintaining good commu­
nication between the developers and V&V'ers.

• It is advantageous for the V&V team to do whatever they can to re­
solve their issues directly with the development team. Once the V&V
team raises issues to the organization level then the communication
channel will be adversely affected.

An independent V&V (IV&V) team is depicted in Figure 2.23. Under
this model there are two separate organizations that communicate with the
customer. The first organization is the development organization. The
second organization is the quality assurance organization hired directly by
the customer. The V&V team attempts to resolve any issues at the lowest
level. In the event that issues cannot be resolved at the lowest level then
issues can be raised and worked all the way up to the customer. Analysis
reports generated by the V&V team are delivered directly to the customer
as well as status reports regarding the V&V project.

82 Chapter 2

S'.a:us Reports
Developnienl

Artifacts

Development
Organization

Cuslomor
Analysis Resails

Format Issue
ResOiUtior

Development
Team

(rfonnal
- Issue -
R»**>ok»ticn

Infernal
- issue -
Rfrsolutic^

Quality
Assurance

Organization

V&V Team

Fig. 2.23. Information Flow for an Independent V&V Team

The IV&V team has all the benefits of being totally separate from the
development organization. They have their own budget, their own man­
agement, and their existence is not dependent on the success of the devel­
opment project. With these benefits come challenges. The biggest chal­
lenge for the IV&V team is establishing good communication with the
development team. It would benefit the project manager of the V&V team
to expend a great amount of effort in assuring that communication is open
and working effectively.

Depending on which organization structure your V&V team chooses,
the V&V project manager must identify all stakeholders and the informa­
tion they require. There are two major sources of information, issues and
analysis results. You must identify where each type of information is to
flow as well as to whom. This is depicted in an information flow diagram
and maintained in the Project Plan. This information flow diagram repre­
sents what information is generated by the V&V team and where that in­
formation goes.

Software Verification and Validation 83

References

Chillarege, Ram (1996) Chapter 9: Orthogonal Defect Classification, Handbook of
Software Reliability Engineering, McGraw Hill

Dorofee, Audrey, Julie Walker, Christopher Alberts, Ronald Higuera, Richard
Murphy, Ray Williams (1996) Continuous Risk Management Guidebook.
Carnegie Mellon University

Fagan, M.E (1976) Design and Code Inspections to Reduce Errors in Program Develop­
ment, IBM Systems Journal., vol. 15, No. 3

Minford, John (2002) The Art Of War by Sun-tzu. New York: Viking Penguin

Chapter 3: The Verification and Validation Life
Cycle

The Verification and Validation (V&V) life-cycle is easily understood if
you are familiar with a traditional software engineering life cycle. A ge­
neric model of the V&V life-cycle is depicted in Figure 3.1. The intent of
the figure is to put the V&V life-cycle in perspective with a traditional
software engineering life-cycle.

Software Engineering
Liffi-Cycie

Requirements
Phase

Design Phase

ImplementaUon
Phase

Tost Phase

Vendc^lion & Valitlalion Lite-Cycle

Requirements
Ph<ise

Design Ph.asG

Implementation
Phase

->-(Traceabiltty ^ a lysis ^

-»-(^ IrilorfcKO Analy&is ^

-•^Requirements Analysis^

" ^ Traceability Analysis ^

- » ^ Inlofface Analysis ^

-**/^ Design Afialysis J

—i^^irrace ability Analysis j

- • • (Interface Analysis])

-»-(^ Co<le Arialysis ^

- ^ Trace ability Ar̂ aTysis)

-*^ Interface Analysis)

•-^ " Test Analysis ^

Fig. 3.1. Verification and Validation (V&V) life-cycle model in relation with a
traditional software engineering life-cycle. For example, the V&V requirements
phase is in-line with the software engineering requirements phase in which the
V&V team fulfills the requirements of traceability analysis, interface analysis, and
requirements analysis.

86 Chapter 3

The software engineer reading this book is going to flail up their arms in
disgust that I left out a few phases in the software engineering life-cycle.
Your systems engineer is going to quickly try to relate this generic model
to the newly defined "V-Model". Your V&V professionals are squirming
in their chairs wondering about the maintenance activities they perform
analysis on as well as the operational aspects of V&V. To all I reply, at
least you are paying attention. On a serious note, the intent of this book is
to discuss the core activities that V&V performs. V&V can perform sev­
eral other types of assessments on a wide range of artifacts; this book is
focusing on those that make up the foundation for a V&V project. In the
life-cycle, V&V performs requirements analysis when the development
project is engineering their requirements. V&V performs design analysis
when the development project is engineering their designs, and so on. As
you quickly see in the figure, traceability analysis and interface analysis is
executed at the beginning of each phase. That is not a coincidence, it was
designed that way. We'll discuss this more when we discuss traceability
and interface analysis. For those not familiar with the traditional software
engineering life-cycle then let me take a moment to put things in perspec­
tive.

Development projects typically assume a traditional phased-approach to
engineering their system. They define their requirements, they architect a
solution in the format of a design. They implement the design using code
and then they test their implementation. This life-cycle can be generically
characterized as having four basic phases; requirements phase, design
phase, implementation phase, and test phase. Literature, academia, and
practice may choose to use different terms but they are more than likely
very similar to what was just described. The V&V project in turn will
execute in phases and their phases run in parallel, or in phase, with the de­
velopment project. When development is generating requirements then the
V&V project is performing requirements analysis. This life-cycle, when
coupled with the V&V requirements, makes up the foundation for the
V&V project.

If you recall the requirements and scope discussions in Chapter 2, V&V
has a set of high-level requirements that they must fulfill. In addition to
the requirements, they have also defined their scope of work, which trans­
lates to the parts of the system that V&V must perform their work on. The
requirements and scope are represented in Figure 3.2. This 50,000 foot
view depicts what needs to be achieved by the V&V project as well as
what parts of the system requires scrutiny.

Software Verification and Validation 87

V4riAc4llor & V«ldaBor S>-ttefn K*qijir«m«nls

»-^ IdUMliii.* fell jiyt)< J

—-^Rrtqiiirf-fripnli Ar.ily.tiiy

*-(^ iririritio» Aoiilyait ^

» ^ lfilerij;c» At;t)ty»it ^

:3

± _L X

0
9

CtxlR An.ilyM

- ^ iiii^ffaoTAnaf/iiin)

vvrai Nwrii fofw. Achiftvno SCOtW Kji VSV Wwk

Fig. 3.2. Overview of V&V life-cycle, V&V requirements, and V&V scope. The
goal of V&V is the root node, objectives are established to meet the goal, and re­
quirements and the scope of work are established to meet the objectives and goal.

The requirements represented on the left side of the figure will be fur­
ther refined for each phase of the life-cycle. As an example, you'll see
more when you read the rest of this chapter, during each phase the V&V
team refines the system-level V&V requirements for the particular phase.
This refinement is depicted in Figure 3.3. As you can see in the figure, the
V&V team starts with the high-level V&V system requirements and for
each particular phase they refine the requirements such that they are appli­
cable for the phase in which V&V is functioning. The example shows the
refinement during the requirements phase and the refinement is a simple
qualification of parent and child elements. During the requirements phase,
child elements become software requirements and parent elements become
system requirements. This simple refinement led to the development of
the 15 standard V&V system requirements. If one was to study each phase
and each requirement you would see that the only difference between
phases is that you work on different artifacts. The V&V team wants to ful­
fill the same requirements for each phase but they are specific for which
artifacts they are working on (i.e. during requirements phase V&V is con-

88 Chapter 3

cemed with requirements, during design they are concerned with the ele­
ments that make up the design).

V4V SysiefT! Ks4ui>«mdott

::)fS^^£^yiJ-

Fig. 3.3. The refinement of V&V system requirements to V&V Hfe-cycle phase.
The V&V project starts with their V&V System Requirements and refines them
for each phase in the V&V Hfe-cycle.

The specific requirements that get derived during each phase are intro­
duced in their appropriate sections. Section 3.1 discusses traceability
analysis and section 3.2 presents interface analysis. These are presented in
their entirety in their own section, even though they are performed during
each phase, because their differences across phases are minimal. Section
3.3 presents the technical analyses that are performed during the life-cycle
phases. Specifically, section 3.3.1 discusses requirements analysis, section
3.3.2 discusses design analysis, section 3.3.3 discusses code analysis, and
section 3.3.4 discusses test analysis.

Section 3.4 introduces the concepts of sofl;ware testing from a V&V per­
spective. For each type of analysis (e.g. requirements analysis, design
analysis, etcetera) one of the discussion threads has to deal with the vari­
ous approaches that engineers and scientists can take to perform the analy­
sis. The approaches are categorized as being manual analysis, static analy­
sis, dynamic analysis, or formal analysis. The main reason for the
classification is simply for organizational purposes. A side benefit to clas-

Software Verification and Validation 89

sification includes better planning and estimations. The concept of V&V
testing can be categorized as dynamic analysis. The V&V team executes
the artifact under scrutiny (i.e. execute a model representing the require­
ments) in order to derive the behavioral aspects of the system. The V&V
team can use these behavioral aspects to fulfill some of the requirements
levied upon them. The reason that V&V testing has a section all to itself is
because testing is a very large subject that is applicable to all of the phases,
not just one particular phase.

Section 3.1 Traceability Analysis

The foundation for the V&V effort exists in the relationships between
originating requirements and their resulting system features. These rela­
tionships are an enabler of future V&V tasks. They act like roads on a
map that associate software features to the system requirements within
scope of V&V. They permit the verification and validation of properties
set forth in the concept and system requirements to assure they have been
carried forward to the software specification, software design, imple­
mented in the code, included in the test plan and test cases, and provided to
the customer and user in the resulting system.

Traceability is established in all the life-cycle phases and V&V's trace-
ability analysis requirements are refined based on the life-cycle phase in
which they are executed. For example during the requirements phase,
traceability analysis focuses on system requirements and software re­
quirements. During the design phase, traceability analysis focuses on
software requirements and elements of the design. During the analysis, the
preceding phase is considered the parent and the current phase is consid­
ered the child. So during requirements phase, the parents are the system
requirements and the children are the software requirements. Figure 3.4
identifies the domain for traceability analysis during the life-cycle phases.

90 Chapter 3

1 Traceability Analysis |

Reqtiimn«fit£
Phase

t
i

Phftse
Implenientarion

Pliasc

Dtiigft EI erne nw

:

Test Phase

Cc4e Hlcmtott

t 1
oo TcJW Sysum TtJ»

Fig. 3.4. The domain space for the life-cycle phases during traceability analysis.
During the requirements phase the domain space consists of system requirements
and software requirements. During the design phase the domain space consists of
the software requirements and design elements.

Traceability analysis requirements are then refined using the domain
space depicted in Figure 3.4. Tables 3.1, 3.2, 3.3, and 3.4 present the
traceability analysis requirements as they pertain to the life-cycle phase.
The first column in each table represents the requirement number. The
number is appended with a character from the set of {R, D, I, T}. Each
letter represents the phase in which the requirement is applicable. For ex­
ample, an 'R' represents requirements applicable to the requirements phase
(see Table 3.1). A character 'D' represents requirements applicable to the
design phase (see Table 3.2). A character T represents requirements ap­
plicable to the implementation phase (see Table 3.3), and the character T '
represents requirements applicable to the test phase (see Table 3.4). The
character is appended to the requirement number strictly for reasons for
discussions in this book. To make referencing easier I added the character
to the requirement number, something that may not need to be done in
practice.

Software Verification and Validation 91

Table 3.1. Traceability analysis requirements for the Requirements Phase

Requirement No. V&V Requirement
3.1.1 .R V&V shall assure all the appropriate system requirements and

software requirements are in a relationship.
3.1.2.R V&V shall assure that the system requirements are related to

the right software requirements.
3.1.3.R V&V shall assure that relationships are consistent in their

level of detail.

Table 3.2. Traceability analysis requirements for the Design Phase

Requirement No. V&V Requirement
3.1.1 .D V&V shall assure all the appropriate software requirements

and design elements are in a relationship.
3.1.2.D V&V shall assure that the software requirements are related

to the right design elements.
3.1.3 .D V&V shall assure that relationships are consistent in their

level of detail.

Table 3.3. Traceability analysis requirements for the Implementation Phase

Requirement No. V&V Requirement
3.1.l.I V&V shall assure all the appropriate design elements and

code elements are in a relationship.
3.1.2.1 V&V shall assure that the design elements are related to the

right code elements.
3.1.3.1 V&V shall assure that relationships are consistent in their

level of detail.

Table 3.4. Traceability analysis requirements for the Test Phase

Requirement No. V&V Requirement
3.1.1 .T V&V shall assure all the appropriate code elements and com­

ponent tests are in a relationship.
3.1.2.T V&V shall assure all the appropriate software requirements

and integration tests are in a relationship.
3.1.3.T V&V shall assure all the appropriate system requirements and

system tests are in a relationship.
3.1.4.T V&V shall assure all the appropriate concept requirements

and acceptance tests are in a relationship.
3.1.5.T V&V shall assure that the code elements are related to the

right component tests.
3.1.6.T V&V shall assure that the software requirements are related

to the right integration tests.
3.1.7.T V&V shall assure that the system requirements are related to

92 Chapter 3

the right system tests.
3.1.8.T V&V shall assure that the concept requirements are related to

the right acceptance tests.
3.1.9.T V&V shall assure that relationships are consistent in their

level of detail.

These requirements are used to define what V&V needs to achieve v^ith
respect to traceability. Just as you saw in the planning section of Chapter
2, these requirements drive the tasks that V&V must perform. To fulfill all
of these traceability analysis requirements, V&V has to perform two high-
level tasks; first they must establish the relationships and second they have
to assess them. Assessing the resultant relationships fulfills the V&V
traceability analysis requirements. The first task of establishing relation­
ships involves developing links between parent elements and child ele­
ments. This means that relationships have to be established between:

• System requirements and software requirements, and vice versa
• Software requirements and design elements, and vice versa
• Design elements and code elements, and vice versa
• Code elements and component tests, and vice versa
• Software requirements and integration tests, and vice versa
• Sytem requirements and systems tests, and vice versa
• Concept requirements and acceptance tests, and vice versa.

The V&V team has an option in performing this first task. If the devel­
opment team has already established the trace between elements within
and between artifacts then the V&V team can elect to bypass this step or
press forward and develop their own. Normally the artifact that is used to
represent traceability relationships is called a traceability matrix.

For the V&V team to establish a traceability matrix on their own is cur­
rently a manual process. Analysts need to become familiar with the sys­
tem requirements that are within scope and then study the software re­
quirements to determine which ones are related to the system
requirements. This of course is during the requirements phase. If the ana­
lysts were performing the trace during the coding phase then the analysts
would become familiar with the design elements (e.g. modules) within
scope and then study the code to determine which code elements (e.g.
functions) are related to the design modules. The development of the
traceability relationships by the V&V team is very time consuming and
dependent on the domain experience of the analyst. For example, the ana­
lyst may be concerned with the stored commanding system functionality.
She would then study the software requirements and possibly identify

Software Verification and Validation 93

software functionality related to certain events that cause a sequence of
commands to be executed. She would then establish a relationship be­
tween the two.

This approach would be considered manual analysis. Static analysis
pushes the envelope a great deal with the use of natural language process­
ing, where software tools parse the artifacts under scrutiny and match re­
quirements together based on the domain represented in the requirements.
Similar domains are an indicator of being related. There is great promise
in this technique which would certainly yield faster times for the derivation
of traceability relationships.

It seems advantageous at this point in time for the V&V team to assume
the traceability established by the development team and assess it. How­
ever, there is a lot to be said for V&V teams that generate their own rela­
tionships and compare them with the developers.

However the V&V Team wishes to implement this first task, either use
the traceability established by the development team or by the V&V team,
the relationships (between parent and child elements and child and parent
elements) are then assessed to fulfill the traceability requirements identi­
fied in the above tables.

During the requirements phase, the tasks that need to be performed by
the V&V team, to fulfill the traceability requirements, are:

• Determine if all the applicable system requirements are associated with
at least one software requirement.

• Determine if all of the software requirements are associated with at least
one system requriement.

• Determine if all the applicable system requirements are associated with
the right software requirements and vice-versa.

• Determine if the level of detail within the relationships is consistent for
all of the requirements within scope.

These tasks, when achieved, will fulfill the traceability analysis re­
quirements represented in Table 3.1. So let's walk through these tasks to
make sure we have the same level of understanding as to what V&V is do­
ing for traceability analysis. First I'll discuss these tasks and then I'll fol­
low up with an example with the intent to clarify any ambiguous words
that may appear in their descriptions.

The first two tasks listed above satisfy requirement 3.1.1.R in Table 3.1,
which was ''V&Vshall assure all the appropriate system requirements and
software requirements are in a relationship. " The first task is basically
checking that all the software-related system requirements, that are within
scope, are linked to some software requirement. This is providing assur-

94 Chapter 3

ance that the system feature of interest has been allocated to the software
and not left out. The second task is doing the same thing but only estab­
lishing the backward relationship. It is concentrating on the software re­
quirements that are within scope and making sure that they are related to at
least one system requirement. This is to assure that there are no hidden
software features being developed. A common term for this is "Easter
Eggs" and can be found in numerous software packages, which take the
form as "back doors" into the system without the customer knowing that
they were built in.

A manual approach is taken to perform these two tasks. It does not re­
quire much effort, as long as the traceability matrix is easily understood. It
consists of doing a quick-check to make sure that everything within scope
is linked to something. Don't read any more into this, this is all that is
done to fulfill this traceability analysis requirement. If the development
team is using software tools to aid them in engineering the requirements
then this becomes a very rapid check, push button if you will.

The third task in the above list "Determine if all the applicable system
requirements are associated with the right software requirements and vice-
versa" satisfies requirement 3.1.2.R in Table 3.1. This task is a little more
involved than the first two mentioned but not by much. It is assessing the
relationships as to whether they are the right relationships. With respect to
traceability and the relationships established between the system require­
ments and software requirements, the focus of this criterion is only on the
relationships. Meaning, is the relationship between System requirement
1.1.2 and software requirement 4.1 the right relationship? This is not to be
confused with requirements analysis, which addresses whether or not the
software requirement satisfies the system requirement. This is not re­
quirements analysis it is traceability analysis, your only concern is whether
or not the system requirement is traced to the right software requirement.
The software requirement may not be correct but if it is addressing the
functionality and domain represented in the system requirement then trace-
ability analysis would pass this relationship. Requirements analysis would
reveal whether the requirement was correct or not.

Whether you are analyzing the relationships between system require­
ments to software requirements, software requirements to design elements,
design elements to source code elements, or source code elements to test
cases the task remains the same. Simply answer the question "is this the
right relationship?"

The approach taken to perform this task is normally a manual approach.
It involves an analyst studying the system requirements to identify the do­
main of the requirement. The domain of the requirement can be extracted

Software Verification and Validation 95

by simply answering the question "What is the requirement talking
about?"

So if you were given the following requirement:

''Requirement 3.4.3.2 MUGSEY 0x01 shall receive commands from the
ground and process them within 10 seconds. "

The analyst may determine that the domain of the requirement is a set of
commands. The analyst would then look at which software requirement,
or requirements, this system requirement was linked with to determine
what the domain is of the software requirement(s). If the above system re­
quirement was linked to the following software requirement:

''Requirement OS 2.4.6.2 Command Processing shall receive, depacket,
and process real-time commands sent from the ground. "

The analyst may determine that the domain for this requirement is a set
of real-time commands. Now the analyst just needs to compare the do­
mains and determine if they are talking about the same thing. More for­
mally, the analyst has to determine whether the software requirement's
domain is a subset of the system requirement. This approach is what is
normally performed. Sometimes, analysts will use additional attributes to
assess the relationship. I advocate these additional attributes for the sole
reason that to truly fulfill the traceability analysis requirement other crite­
rion need to be assessed.

In addition to the domain, the action that the requirement performs as
well as when the action is to be performed should be compared. Table 3.5
is a data structure that can be used to extract the attributes from the re­
quirements being assessed. You can populate this table for the system re­
quirements being assessed and then develop a table for the software re­
quirements being assessed. Then the tables can be compared to each other
to determine if the system requirements are linked to the right software re­
quirements.

96 Chapter 3

Table 3.5. Data structure for determining whether or not the system requirement is
traced to the right software requirement

Requirement Requirement Title
Number

Domain Action When to take Ac­
tion

3.4.3.2

3.4.3.2

Real-time Com­
manding
Real-time Com­
manding

Commands Receive

Commands Process

When sent from
Ground
Within 10 seconds
ôfjecei£t̂ _̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂

The fourth task in the above list, "Determine if the level of detail within
the relationships is consistent for all of the elements within scope", satis­
fies requirement 3.1.3.R in Table 3.1. Determining the level of detail that
is represented in the relationship is manual in nature and involves engi­
neering judgment. Science can help out in this arena to lessen the amount
of subjectivity. The results of fulfilling this requirement are used to de­
termine the level of maturity for the artifacts being assessed. To meet this
requirement, the analyst has to first identify the level of detail that exists in
the relationships. Once the level of detail is determined the analyst needs
to determine if there is a consistent level of detail being used for all the re­
lationships in the system. Figure 3.5 is one way to represent the level of
detail within relationships.

Software Verification and Validation 97

r
Guidance
Element
0S_2.1

fos\

System
Requirement

3.4.1

t
Observatory

Segment
OS 2.0

i 1
C&DH

Elemenl
OS_2.4

1 r
Telemetry
Man.^ger

^ OS..2.4.3 ^

1

V-4-

'

3 .1 /

System]
Requirement

I 5.1 J

T
Ground

Segment
GS_4.0

Fig. 3.5. Level of detail for the relationships representing the two system require­
ments

This figure can be used to determine if there is a consistent level of de­
tail being represented by the relationships in the system. In this example,
you can quickly see that system requirement 3.4.1 is linked to a third-level
software requirement and a fourth-level software requirement, OS 2.1.3
and OS 2.4.3.1 respectively. These lower-level software requirements
even refine the system requirement by providing more detail. On the other
hand, system requirement 5.1 is linked to software requirements that make
up the ground segment (GS_4.0). Comparing these two links you can eas­
ily see that the level of detail that makes up the relationships is not consis­
tent between the two. The latter simply allocates all of the ground segment
requirements to the system requirement while the former calls out the spe­
cific software requirements. The one thing to note here is that as a result
of this consistency check, issues are not normally generated based on con­
sistent use of the same level of detail. For example, in Figure 3.5, even
though there is not a consistent level of detail being used I would not au­
thor an issue. The reason is based on the engineering judgment used to do
the consistency check. It isn't readily clear that there is a real problem
here; there is a concern but not necessarily a problem. I would author a

98 Chapter 3

risk at the Project level. A risk that calls out the fact the ground segment
has yet to mature enough so that system requirements can be allocated to
it. Having said that, there probably would be an issue generated from one
of the other tasks since there is a lack of ground requirements. However,
just because the project is not consistent with the level of detail does not
immediately cause a problem but it does cause a concern.

At the completion of these four tasks, the V&V team has established a
strong foundation for its future activities as well as provided insight to the
development effort as to the maturity of the software requirements. The
results of executing these tasks provide the development project with the
following assurance:

• The system requirements of concern have been allocated to the
software.

• There are no additional software requirements allocated to the system.
• The system requriements of concern are linked to the right software

requirements.
• The level of detail used within the relationships is consistent for the

system requirements of concern.

Now that we have a description of the tasks that are needed to be exe­
cuted to fulfill the traceability analysis requirements, let's use an example
to clear up any questions. Take for example the traceability matrix pro­
vided by the development organization to the V&V team regarding Project
MUGSEY 0x01 (See Table 3.6). The first and second columns identify the
system requirements and the third and fourth columns identify the software
requirements that are related to the system requirement (e.g. System Re­
quirement 3.4.1 is related to Software Requirements OS 2.1.3 and OS
2.4.3.1). The traceability matrix represents those system requirements that
came out of the scoping exercise discussed in Chapter 2. These are the
system requirements of concern to the V&V effort. Specifically, these are
the system requirements associated with the third V&V objective "Provide
assurance that the system software can reliably communicate with the
ground." For our example, the V&V team is performing traceability
analysis on these system requirements associated with communicating
with the ground segment.

Software Verification and Validation 99

Table 3.6. Traceability Matrix provided by the MUGSEY 0x01 development team

Software
Regt2fo.̂ ^

System System Requirement
Regt. No.

I4J""™""""1^^ OS 2.1.3
position of the vehicle during
ascent and descent to the
ground segment.

Software Requirement

3.4.2

3.4.3.2

4.1

5.1

5.2

MUGSEY 0x01 shall provide OS 2.4.2.3
a connection to allow for data
recovery.

MUGSEY 0x01 shall receive OS 2.4.6.2
commands from the ground
and process them within 10
seconds.
MUGSEY 0x01 shall separateOS 2.4.5.2
the observatory segment from
the launch segment when
commanded or when it
reaches 50,000 feet in alti­
tude.

RS3.2

The Guidance Element shall
packetize the altitude and
position data along with the
local time and send this
packet to the Memory Man­
ager and to the Telemetry
Manager of the C&DH Ele­
ment.

OS 2.4.3.1 Telemetry Manager shall
send the position of the Ob­
servatory Element, to the
ground, once every 10 sec­
onds.
Memory manager shall pro­
vide an interface to
downlink the data after re­
covery.
Command Processing shall
receive, depacket, and proc­
ess real-time commands sent
from the ground.
If the observatory detects
that it has achieved an alti­
tude of 50,000 feet it shall
issue a separate command to
the Recovery Segment.

MUGSEY 0x01 shall be able Ground
to receive all telemetry during
ascent and descent.
MUGSEY 0x01 operations Ground
shall send commands during
ascent and descent from the
ground operations.

The recovery segment shall
separate the observatory
segment from the launch
segment when commanded.

100 Chapter 3

To fulfill the traceability analysis requirements we have to perform four
tasks:

• Task 1: Determine if all the system requirements are associated with at
least one software requirement.

• Task 2: Determine if all of the software requirements are associated
with at least one system requriement.

• Task 3: Determine if all the system requirements are associated with the
right software requirements and vice-versa.

• Task 4: Determine if the level of detail within the relationships is
consistent for all of the requirements within scope.

Task one is perfomed by looking at the traceability matrix and
determining if all of the system requirements are at least linked to one
software requirement. We would write one V&V issue against the last
entries in the table, system requirements 5.1 and 5.2, which are linked to
the ground and do not have any requirements defined. For the time being
we will label this first issue VV_Issue_R0001.

Task two is performed similarly by looking at all of the software
requirements and assuring that they are linked to at least one system
requirement. To perform this task we choose to build the data structures
identified in Table 3.5. Figure 3.6 is the data structure for the system
requirements and Figure 3.7 represents the software requirements.

System
R«<{ukem«tit

111
3A2

3JJ2

4.1

51

U

t)<s>mm

position of %'ehjck
4Ma
cotnm^ds
comsftands

coittmisnds

^tjtrude

i^lttnttrv

t&ttmw.d%

Action

uUmHH
piovid*
5f«c*iv<?

ptOCiU

separate

s^parat*

i«c«iv#

%m4

When to tak* aciton

duniiis: mt^m and discern
cofi«ect<?d to saroiand
•^'h^n Sffit (xoin ^o tmd
^itim I ti &*cottd« of f tc*ipi

vdb*n s*«t IVotn g r̂cmnd

'^'htn it r*ach«« 50K: im

dmnz Mt^m and discern

dyj^l uam md ducmt

Fig. 3.6. Traceability data used for assessing system requirements

Software Verification and Validation 101

OS 2J J

miAXl

OS 14 2 J

0S?4?.?

o $: i j . :

RS 12

Ckouttd
Citomiid

DfS'mab

Ijositiort data andkcMtimt

packet

l^odtion «f Otn-sen-aton* Eta»§nt

4ac3

realvttme cotstmstxds

«<>mffl4B«4

cojî ^^ninds

Acsort.

jjacketue

send

smd

pfovjd*

\Vh«tt ?o tak# acti42>n

*%
-

«\'W' 10 seconds

aiterrecoverv

recetve, depacket, andprod^vh«n sstil frotrs p î5\md

iisue

separate

%vhttt alutude « WtL t w

u'ben co^miand^d

Fig. 3.7. Traceability data used for assessing software requirements

Using these two figures we can determine whether or not there are addi­
tional software requirements that are not linked to a system need. There
are a few areas of concern. First, software requirement OS 2.1.3, which is
linked to system requirement 3.4.1 identifies functionality for building
packets of data that will contain the position of the vehicle as well as the
local time. There are no system requirements for building packets of data.
This software requirement, even though the development team has linked
it to system requirement 3.4.1 does not seem to have a related system re­
quirement. Even though this may be an oversight at the system level, I
would still author a V&V issue about this. I would write an issue because
the software developers are going to develop the software such that it bun­
dles all of the data into packets and then sends those packets to the ground.
The systems engineers have not identified that as being needed or they
have overlooked it and missed some system requirements. I would author
a second V&V issue labeled VV_Issue_R0002 detailing this discrepancy.

The second area of concern is with software requirement OS 2.4.2.3,
which is linked to system requirement 3.4.2. The system requirement in­
dicates it wants a hard connection to the vehicle in order to retrieve data.
The software requirement provides that but indicates that it will be used
"after recovery" (see the column titled "When to take action" in Figure
3.7). The frequency for retrieving data does not seem to be consistent;
however this is not a problem for traceability analysis to solve. This will
get resolved when we perform requirements analysis. So at this time I
would only flag it so that the V&V team does not forget to follow up.

The third task to be performed by V&V is to determine whether the re­
lationships established are the right relationships. We use Figures 3.6 and
3.7 to aid us in the assessment. The concern here is again with software
requirement OS 2.1.3 and system requirement 3.4.1. The software is add-

102 Chapters

ing functionality that there does not seem to be a system need for (see the
action column in Figure 3.7). The software indicates that there will be
some protocol to which the data is bundled together and system require­
ment 3.4.1 does not state that is a need. Software requirement OS 2.4.6.2
reinforces this concern by stating that it will receive, depacket, and process
real-time commands. Depacketing the commands suggests the ground will
bundle the commands together with other data, although there are no sys­
tem requirements to support this. These concerns would be added to
VV_Issue_R0002 for resolution.

Another concern that would definitely have an issue authored against it
would be with the relationship between system requirement 3.4.3.2 and
software requirement OS 2.4.6.2. The system requirement states that
commands are to be processed within 10 seconds. The software require­
ment, which it is linked to, does not carry the timing constraint forward.
As such, the system requirement is not linked to the right software re­
quirement. Actually, after looking for the right software requirement that
it should be linked with I could not find one. As a result I would author an
issue, VV_Issue_R0003, for the identification of the right software re­
quirement for system requirement 3.4.3.2.

The last concern has to deal with the fact that there are no requirements
identified for the ground segment, yet there are system requirements allo­
cated to it. I would add this data to the first issue, VVIssueROOO 1, for
resolution.

The last task deals with determining whether there is a consistent level
of detail represented in the traceability matrix. I built the graph presented
in Figure 3.8 to represent the level of information that is depicted in the
traceability matrix. The root nodes represent the system requirements, la­
beled as such, and the circles represent the software requirements. Starting
at one of the system requirements you can trace down through the structure
of the software requirements to see which software requirement the system
feature is specifically linked.

Software Verification and Validation 103

t
Gukiancc

0S..?1

Sy«em ^
Requlr«fn«nt

i

Segmvnt
OS 2.0

I >
CAtHI

T
T«t«m«iry
MiiongtH'
OS 2.^.3

SyUrtoi
R»quirtmiu<nl

3.4 2

ObMHvatOty

OS_2.0

Elaniw!
OS. J.";

Momory

OS..2.4 2

RtKtuir(«mi»nt

Sogrncnt
OS„2 0

C4DH
Eleme«U
0S . .2 *

Command ^

'̂ OS,2.-«6

2.4 6.2^ \1A 5.2J

f
06»»r¥«tory

S«{(int)nl
OS,,2.0

i
C&DH

Efemerl
O S , 2 i

R«qu(remert

!
j

1
1

z^" " -.

• >

RS 3.0

1
Gufdance
Etem*nt
OS 2A

V3 2 ;

r Sy»l9m
R*<)i;in»fTi«nt

L *2 ^

•

Graund
S«tFnenl
GS 4.0

System i
RDqifirfirmm!

5;; j
I

Ground
S^mHtn
GS.4.0

Fig. 3.8. Graph representing the level of information represented in the traceability
matrix

In looking at the graph you can see that four of the six system require­
ments have a structured graph beneath them revealing the level of detail
that represents the trace. Two of the six, system requirements 5.2 and 5.1
do not have any depth to their trace. What does all this mean? Well first
there are only two areas that skip a level of information. System require­
ments 3.4.1 and 4.1 have branches that skip one of the levels of informa­
tion. This is not a concern since they are separate sections of the software
requirements and do not adhere to the same structuring. The last thing that
this shows is exactly what our already written issues have stated, and that
is the ground segment of the software is not mature enough to provide the
level of detail needed to establish a trace. It is also indicative that V&V
won't be able to fulfill their other assessments simply because the informa­
tion does not exist. This concern would generate a V&V risk because it
impacts future V&V tasks and needs to be managed.

So what are the V&V results and what has V&V provided development.
The V&V objective that we were focusing on for this example was for
V&V to provide assurance that the system software can reliably communi­
cate with the ground. This identified the system requirements of interest to
the V&V team. Next the V&V team needed to fulfill their traceability
analysis requirements by performing four tasks. The results of those tasks

104 Chapters

can be summarized at the requirements level and reported back to the pro­
ject.

The first requirement that V&V needed to fiilfiU was to provide assur­
ance that the system requirements have been allocated to the software, for
those system requirements that represent communicating with the ground.
There is one issue that V&V is reporting and that deals with the fact that
the ground segment has yet to have their requirements defined. As such,
not all of the system requirements can be shown to have been allocated to
the software. The second part of the first requirement that V&V needed to
fulfill was to provide assurance that all of the software requirements can be
related to a system need, for those software requirements associated with
communicating with the ground. There is one issue that V&V is reporting
and that deals with the software providing a capability to packet data that
is collected during operations. There is not a system requirement that calls
for this functionality. In addition there is a concern that the software will
depacket the commands sent to it from the ground and yet the ground has
not indicated that it will follow such a protocol.

The second requirement that V&V needed to fulfill was to provide as­
surance that the system requirements are related to the right software re­
quirements, for those system requirements that represent communicating
with the ground. There is one concern that V&V is reporting and that
deals with the fact that there is a system requirement that is not linked to
the right software requirement. The system requirement deals with proc­
essing commands within 10 seconds but the software requirement associ­
ated with this does not carry the timing constraint forward.

The last requirement that V&V needed to fulfill was to provide assur­
ance that the relationships were consistent in their level of detail. The
concern that V&V had was that there were no ground segment require­
ments defined for their associated system requirements. Although this is a
concern, V&V is not writing an issue for this concern since the first issue
already covers this area.

Lastly, V&V is opening a V&V risk that it will manage itself. The risk
has to do with the fact that given the ground segment requirements have
yet to be defined there is a concern that V&V will not be able to meet their
objectives and schedule. The V&V team will manage this risk and miti­
gate it by resolving the issues that have been opened.

All of the V&V tasks performed to meet their traceability analysis re­
quirements were performed manually. This is a concern of the author sim­
ply because it would not be difficult to build tools to help analysts in per­
forming these tasks. Static analysis would benefit from the use of tools
that parse system requirements and software requirements to extract the
data needed to populate something like that depicted in Table 3.5. Tools

Software Verification and Validation 105

that use the same requirements documents as well as the traceability matrix
could build graphs that depict the level of information represented by the
traceability matrix. These tools would not replace the engineers but it
would certainly speed up the execution. One last note that I want to dis­
cuss is something that science could solve for the engineering community.
This has to deal with defining "levels of detail" as well as what it means to
be consistent in its use. Are there any correlations between the levels of
detail and issues? This is something that science could provide and then
tools could be built to take it one step further.

To fulfill the traceability analysis requirements within the other life-
cycle phases is a simple translation of the tasks already defined. For ex­
ample, during the implementation phase, the remaining tasks that need to
be performed to fulfill the requirements of traceability analysis (see Table
3.3) are:

• Determine if all the applicable design elements are associated with at
least one code element.

• Determine if all of the code elements are associated with at least one
design element.

• Determine if all the applicable design elements are associated with the
right code elements and vice-versa.

• Determine if the level of detail within the relationships is consistent for
all of the elements within scope.

As you can see all you have to do is simply place the artifacts of interest
into the task description. If you are in the design phase then substitute
child elements with design elements and substitute the parent element with
software requriement. The tasking is the same except for which it is ap­
plied and that is dependent on the artifacts that are under scrutiny.

The last thread of discussion that I want to cover has to do with the
various V&V approaches and how science can advance the engineering
practice. In the past it has largely been a manual effort in fulfilling the
traceability analysis requirements, however there are a few areas that look
promising.

Science needs to focus on providing support in the automatic generation
of traceability matrices. Even if science did provide this capability to the
engineering community it wouldn't alleviate the need to perform traceabil­
ity analysis. You would still have the engineer in the loop, but it wouldn't
be so resource intensive. One area in need of advancement is natural lan­
guage processing, which could prove beneficial in establishing traceability
matrices.

106 Chapters

Other areas that science could provide valuable support include visuali­
zation techniques to aid in the assessment of traceability matrices. The ex­
amples I have used in this book have been smaller sets of larger traceabil­
ity matrices. So visually scanning them in search of requirements not
associated with anything has been quite easy. Projects that have a signifi­
cant number of requirements, somewhere in the order of 500 requirements,
the visual assessment that engineers perform breaks down. Visual tech­
niques would also yield great rewards in communicating back to the de­
velopment project the results of traceability analysis.

Tools to support the extraction of the domain and functionality of re­
quirements would improve the engineering assessments focused on deter­
mining whether or not the parent element is linked to the right child ele­
ment. To date, it requires the engineer to identify the action the
requirement wants performed as well as the domain in which the action is
applicable. Tools to help the identification of these requirement's attrib­
utes would speed up the process as well as keep the engineers from miss­
ing something in the large data that is accumulated.

The last area that provides fertile ground for science is the exploration
of what it means to have a consistent level of detail. What does it truly
mean to not be consistent, is it a problem? This last area, which is largely
a subjective assessment by a V&V analyst, would see great return if sci­
ence could provide some support.

Section 3.2 Interface Analysis

Any time information has to be moved from one item to another (one
module to another, one procedure to another) there is always a chance that
it can be corrupted or used the wrong way. Systems engineers find it ad­
vantageous to modularize their designs, as they should. This allows for
different teams to build the individual modules. Keep in mind it is not
only done so that we can use different teams, it is beneficial because you
break the problem down into smaller more manageable parts. It then be­
comes the job of the systems engineer to plug these modules together in
order to have a complete system. The individual teams would normally
build their modules according to some specification that dictates how they
are to communicate with the other modules (e.g. an Interface Control
Document (ICD)). Some engineering projects even have working engi­
neering models that the teams can use to test their modules prior to integra­
tion. Even though this approach is favored there are a variety of problems
that can occur (e.g. engineering models aren't accurate, software imple-

Software Verification and Validation 107

mentation truncates data values). As such, the V&V team focuses their ef­
fort during each hfe-cycle phase on the elements that enable the communi­
cation between software modules.

For each of the life-cycle phases the V&V team wants to make sure that
the right interface elements have been identified, are completely defined,
are used consistently, maintain the performance needs of the system, and
can be verified via testing. These requirements are to be fiilfiUed for each
phase. Traceability analysis has established what parts of the system that
V&V is concerned with. It is the responsibility of interface analysis to
now make sure they are right. The specific requirements that V&V must
fulfill are stated in Table 3.7. The one noticeable difference, as compared
to the traceability analysis requirements, is that there is only one set of in­
terface analysis requirements for all of the life-cycle phases. For the inter­
face analysis requirements, there is no need to interchange the wording
based on the phase in which you are in. The requirements are the same for
all of the phases.

Table 3.7. Interface Analysis requirements for the various life-cycle phases.

Requirement No. V&V Requirement
3.2.1 V&V shall assure that the right interface elements have been

identified.
3.2.2 V&V shall assure all the interface elements are completely

defined.
3.2.3 V&V shall assure that each interface element is used consis­

tently.
3.2.4 V&V shall assure interface elements maintain the perform­

ance needs of the system.
32.5^^^ ^̂ ^ ^̂ ^ Y&y^jh^\^^^^^ ^

For the V&V team to fiilfill their interface analysis requirements identi­
fied in Table 3.7, they need to perform the following generic tasks.

• Task 1: Identify the data that should be past between modules.
• Task 2: Identify the interfaces that should handle the data transactions.
• Task 3: Compare the V&V defined interfaces with those defined by the

developers and assess the inconsistencies.
• Task 4: Analyze each data item and determine if it is completely

defined.
• Task 5: Graph the locations where the data items are used and determine

if they are used consistently.
• Task 6: Identify the performance needs of the system.

108 Chapters

• Task 7: Model and simulate the communication between interfaces to
determine if these performance needs are maintained.

• Task 8: Develop tests for the interfaces and identify which ones are not
testable.

Tasks one and two are setting the stage for the validation effort. It is the
up-front work that V&V needs to perform to assess whether or not the de­
velopers have identified the right interfaces. These are very expensive
tasks to perform and require subject matter experts (SMEs). It would be
advantageous for a V&V organization to either use or begin building an
oracle of knowledge that encapsulates best practices for defining inter­
faces. In executing these tasks, your V&V analysts act as if they were the
developers responsible for engineering the interfaces in order to define
what data needs to be communicated through the system as well as the in­
terfaces responsible for managing the communication. Use cases and sce­
narios (e.g. sequence diagrams) are an excellent tool for the V&V analysts
to capture what they feel the system should have along the lines of data
and interfaces. Data flow diagrams are another good tool that I have used
extensively. It is at this point that V&V is defining what data they feel
needs to be passed through the system. There are a handful of ways in
which the V&V team can approach this, they can perform a brainstorming
session where they try to hack out all of the data that might be needed,
they can study similar systems and extract the data that they communicate,
or they could prototype the system and see what data they need to have
communicated through the system. These approaches are dependent on
one thing and that is the objectives that the V&V team are trying to
achieve. The reason I feel it is dependent on the objectives is that if the
V&V team's objective was focused on the identification and handling of
faults then they may use fault trees or Failure Modes to help identify the
data that is needed to be communicated.

Task three is dependent on the results of task one and two. Once the
data and interfaces are defined by the V&V analysts they can compare this
to what the developers have actually engineered. Again, this is a manual
process for the V&V analysts to compare what they think should exist to
what actually does exist. This is the validation step, where the V&V effort
is assuring that the right interface elements have been identified. Take
note that this does not have to be a manual process. There has been prom­
ising return from V&V teams that have modeled the developer's interfaces
and executed them to derive their apparent behavior. V&V analysts can
then assess this behavior to what they thought should have been revealed.
Also note that this can be done with the requirements, design, code and
even the tests. The corner stone for fulfilling the first interface analysis

Software Verification and Validation 109

requirement, "V<ScV shall assure that the right interface elements have
been identified'', lies in the results of tasks one, two, and three. In order to
determine whether or not the development team has identified the right in­
terfaces requires the V&V team to compare them against something. That
something is developed during the execution of task one and two.

Task four requires each data item, identified during Task 1, to be as­
sessed for completeness. Completeness checklists can and should be de­
veloped to define what it means for a data item to be complete. To begin
with, an organization may choose to use the following list. The V&V ana­
lyst needs to assure the following items of information are provided for
each data item:

• The units of measure the data represents
• The required precision for the data
• The range of values the data may take on
• The timing in which the data needs to be processed
• The source of data
• The destination of data

If temperature readings are being passed between modules and the ICD
defines temperature as the data item then the V&V team will assure that
the ICD has also identified what measurement system that temperature is
being represented in (e.g. Celsius). The V&V team will also check to
make sure the required precision is defined and the minimum and maxi­
mum values that the temperature may be recorded in. They also need to
check if there are timing requirements for which temperature readings
have to be pushed through the system. Lastly, the source of the data item
and its destination shall be identified and represented for each data item.
Completeness checks should be represented in some knowledge base so
that the task can be repeated.

Task five involves mapping all the usages of each data item. Once the
analysts know where all the data items are being used they can assess
whether or not those items are being used consistently. When performing
interface analysis on code there are numerous tools to support this. This
would be considered static analysis, since the SME uses a tool to aid them
in their assessment. Any dependency browsing tool reveals all of the loca­
tions of data items. It becomes more and more manual as the development
teams use natural languages (e.g. English language) to represent the engi­
neering artifacts. When the development teams incorporate the use of
tools then the process becomes more static and possibly dynamic. There
has also been a breakthrough in the dynamic analysis approach especially
when interfaces are used to provide control of the system. These specifica-

110 Chapters

tions are modeled (e.g. using tabular notation as in the Software Cost Re­
duction (SCR) tool) and then simulated to assure consistent use of data
items and state transitions (Heitmeyer et al 1998). Even though this ap­
proach has been marketed as a requirements analysis approach it can be
beneficial during the requirements phase when you have interface re­
quirements to assess.

Task six and seven are pretty vague activities and hard to define generi-
cally. The problem that the V&V team is trying to solve is whether or not
the interfaces maintain the performance needs of the system. So if the sys­
tem requires commands to be processed within 10 seconds of receipt then
the V&V team needs to assure that the interfaces defined can achieve this
performance. This is a very clear example for why V&V is a systems en­
gineering discipline. In order to assess whether or not the interfaces can
maintain the performance requirement of processing commands within 10
seconds of receipt requires the V&V team to take into consideration the
entire thread of execution from receiving the signal, recognizing the com­
mand, handling an interrupt, routing the command to the appropriate ter­
minal and giving the terminal processing time. My point is simply this, as
a V&V analyst you have to take into consideration everything that can af­
fect that timing requirement.

One approach an analyst can take is to actually test these performance
needs. However, the V&V effort would not provide any direct benefit to
the requirements and design phases if they waited on the code to be written
to actually test the interfaces. There are other dynamic analysis ap­
proaches that can be used but it requires modeling the interfaces and then
simulating them. This is an immature area for V&V, which is surprising
since modeling and simulation is not an immature discipline to the engi­
neering community. The reason that I say it is immature from a V&V per­
spective is that we can not do it cheaply. To date, there are no slick meth­
ods that allow us to quickly model the interfaces, using the requirements,
and then simulate them. It also requires a lot of configuration management
effort since you have to assure that your models maintain the integrity of
the requirements as they change. Another problem that V&V has to guard
against is if an issue surfaces then they have to ensure that it wasn't their
model that generated the issue and that it actually was the developed inter­
faces.

Task eight is pretty straight forward and requires all the interfaces of
concern to V&V to be pre-tested. Pre-tested in this sense means the V&V
team needs to develop tests for the interfaces of interest and flag those that
can not be tested. In developing tests the V&V team is concerned with
whether or not the interfaces can be verified via execution.

Software Verification and Validation 111

These tasks which I have just discussed can be further explained via an
example. I will again call upon project MUGSEY 0x01 for demonstration.
During the requirements phase one of the V&V objectives is to provide as­
surance that the software interfaces adequately support the identification
and handling of faults. The system requirements of interest to V&V be­
cause of this objective are identified in Table 3.8. In Table 3.8 the first
and second columns identify the system requirements and the third and
fourth columns identify the software requirements that are related. For ex­
ample, system requirement 3.4.3.1 is related to software requirement OS
2.4.5.1.

Table 3.8. System requirements of interest to V&V during interface analysis.

System Reqt
Number

3.4.3.1
6.3

6.3.1

6.3.2

System Requirement

Stored Commanding
Fault Handling

Science Faults

Abort Mission

Software Reqt
Number

OS 2.4.5.1
OS 2.1.6

OS 2.1.7

OS 2.4.2.1
OS 2.4.4
OS 2.4.5.1

. Software Requirement

FDIR
Guidance Element -
Update
Guidance Element - In­
validate
Memory Manager
Watchdog Timer
FDIR

System requirement 3.4.3.1, stored commanding, states ''MUGSEY0x01
shall process a command sequence upon entering a failure scenario. " It
has been allocated to the Fault Detection Isolation and Recovery (FDIR)
software requirements. The specific software requirement to which it as­
sociated is OS 2.4.5.1, which states ''If the observatory detects a descent
rate of (TBD) feet per second it shall dispatch a RECOVERY command se­
quence. " We will use this as our example and step through the tasks iden­
tified above.

Task one and two, again, are the precursor to the validation effort and
require the V&V team to identify what data and interfaces need to be de­
fined for the system and user needs. In order to identify the data items that
need to be passed between modules requires the V&V team to identify a
set of potential faults that the system could experience. The second task
will then require the V&V team to identify the interfaces needed to iden­
tify and handle these potential faults. This data will be used during the
remaining V&V tasks because the V&V team needs to fulfill their re­
quirements to meet their objective. The V&V team came up with the fol­
lowing set of potential faults.

112 Chapters

• Global Positioning System (GPS) stops sending position data and the
system is not aware that is has stopped so it keeps using the last reading
from GPS.

• Temperature sensors stop sending temperature readings and the system
is not aware that it has stopped so it keeps using the last known readings
form the temperature sensors.

• Guidance element stops sending position data but it does update the
watchdog timer so the system is not aware that the guidance element has
stopped.

• Altitude decreases or remains the same due to winds on the vehicle and
the system thinks it is descending.

• Observatory fails to recognize when it is descending.

Using this small set of potential faults, which the team developed during
a brainstorming session, the V&V team then developed a data flow dia­
gram to represent the data that should be passed in order to identify or
handle these faults. Figure 3.9 is the data flow diagram used to represent
the first fault, when GPS stops sending data but the system is unaware that
it has stopped so it keeps using the last reading. The data flow diagram
only encapsulates what the V&V team thought should be communicated
with respect to the two requirements identified above (System requirement
3.4.3.1 and software requirement OS 2.4.5.1). Data flow diagrams would
need to be built for the remaining requirements from Table 3.8.

Software Verification and Validation 113

Fig. 3.9. Example data flow diagram used during interface analysis. This data
flow represents what data the V&V team thinks should be represented in the sys­
tem to handle a fault with the GPS unit.

Task 3 is then performed to compare what the V&V team felt should be
defined against what the development team did define. In Figure 3.9 the
V&V team felt that a GPS unit would provide position data as well as a
validation bit to the Guidance Element. The validation bit would be used
to indicate whether or not the GPS unit is responding. The logic would be
very similar to a watchdog timer in that the GPS updates the bit every so
many seconds to let the system know that it is operating nominally. If the
validation bit is not sent then the system would know that it has invalid
data and would not use it. The V&V team also expects the Fault Detection
Isolation and Recovery (FDIR) subsystem to receive altitude data across
the interface and in response send an index to the command processing
subsystem. The index that is sent across the interface would be a reference
value for a specific sequence of commands to be executed. The specific
sequence of commands would be identified by command processing using
the value of the index. There are 5 data items of interest to V&V in this
example which are captured in Table 3.9.

114 Chapter 3

Table 3.9. Data items of interest during interface analysis. The data items were
generated by assessing a potential fault in which GPS would stop sending data but
the system was unaware that it had failed. These data items are what the V&V
team feels should be represented to at least be able to identify and handle the fault.

Data Item
Position
Validate Bit
Altitude
Stored Command Index
Commands

Sent From
GPS
GPS
C&DH Element
FDIR
Command Processing

Sent Where
Guidance Element
Guidance Element
FDIR
Command Processing
C&DH Element

The V&V team would then use this information to compare against the
developer's defined interfaces. A snapshot of the developer's require­
ments, data-flow diagram, is depicted in Figure 3.10. In looking at the fig­
ure you can see that the developers have not included GPS sending a vali­
date bit, or anything like it, to the Guidance Element.

Uoh^
PofiiitonirKJ

jSystetn (GPS)

Tempera'.ure lje,j-,p(jfa*tire-f * ' ' * "^^ ' * ' ^ *

Fig. 3.10. The developer's data flow diagram used to compare against the inter­
faces that the V&V team developed. The inconsistencies are assessed to deter­
mine if the developers have identified the right interface elements.

Software Verification and Validation 115

The data flow diagram does not have to specifically identify a "validate
bit" but what the V&V team was looking for was some data item to be
passed between GPS and the Guidance element that would indicate
whether data was stale or not. Too many times we have encountered prob­
lems of reading from registers that aren't zeroed after a reading and the
source does not update the register with new data but the destination mod­
ule keeps reading from the register thinking the data is new. This is a con­
cern to the V&V team since data from GPS could become old if GPS fails.
In bringing this concern up to the developers they had agreed with our
concern. However, they could not modify the information sent from GPS,
since they are buying it off the shelf Instead they are adding a require­
ment to the Guidance Element to make sure that it is receiving valid data
from GPS.

The other concern that comes out of tasks one, two, and three has to do
with the specificity of software requirement OS 2.4.5.1. I know, you've
probably not heard that before, since when is it a problem to be too spe­
cific? The problem that the V&V team has is that the project has only
specified one sequence of commands to be dispatched for all possible fail­
ure scenarios (see Figure 3.11). As such, their FDIR only sends one mne­
monic for all possible failures and the V&V team does not believe that the
system should respond to all possible failures with a RECOVERY com­
mand sequence. According to the master command database, the
RECOVERY command sequence turns on the strobe, beeper and then
separates the observatory from the balloon. This means that if the tem­
perature sensors stop sending temperature readings then the observatory
will separate from the balloon and end the mission prematurely. The V&V
team feels that an index into a table of commands should be sent from
FDIR to the command processor so that the development team would have
different options for dealing with different failure scenarios.

116 Chapter 3

RECOVCRY

Fig. 3.11. Data flow diagram for the C&DH subsystems responsible for respond­
ing to failures. In the figure you can see that only one command sequence,
RECOVERY, is sent in the event of a failure.

As the V&V team wraps up tasks one, two, and three they are left with
interfaces that they feel should exist to meet the needs of the system.
These interfaces may not be complete but at least the V&V team is com­
fortable with the fact that all the elements that are needed have been identi­
fied. Now the V&V team performs task 4 to determine if the data items
are completely defined. As stated before, a checklist is a great starting
point for the V&V team. Our V&V team will check to make sure the fol­
lowing items are defined for each data item in Table 3.9:

• The units of measure the data represents
• The required precision for the data
• The range of values the data may take on
• The timing in which the data needs to be processed
• Source of data
• Destination of data

Please note that the data items in Table 3.9 are for only one particular
fault and the V&V team would have to look at all data items that were
identified from tasks one and two. This task is also dependent on the for­
mat in which the data items are being represented. If the developers are
using tools to define their interfaces or data dictionary then the V&V team
can automate the completeness check. Tools are beginning to be used
pretty frequently in which some tools require the designer to identify all of
the data items attributes the first time an item is introduced into the system.

Software Verification and Validation 117

In the event that developers have not evolved to using tools then this can
become another manual process for the V&V team. You are probably see­
ing a trend in which it v^ould seem advantageous for the V&V team to per­
form one initial task at the beginning of each phase v^hich would be enter­
ing the developer's data into some common framework for V&V tools to
operate in. It may be effort-intensive at first but I believe it would pay off
in the long run.

The V&V team has made sure that all of the appropriate interface ele­
ments are present and completely defined. Now task 5 is performed to as­
sure that wherever those elements are used in the system they are used in a
similar fashion as they were previously defined. This is where a depend­
ency browser is extremely important. If the developers are only writing
their requirements in a text document then this task becomes an extremely
manual process for the V&V team during the requirements phase. Using
the example above, the V&V team would search for all occurrences of the
data item altitude and make sure that it is being used as it was defined in
task four. Meaning, task four may have revealed that altitude readings will
be maintained with a precision of 5 digits and have a range of 0 to 99000.
However, the V&V team may see in the developer's interface require­
ments that altitude readings will maintain altitude using 2 decimal values
which can make altitude values 7 digits (e.g. 39987.23). This is not con­
sistent with its original definition. The design should indicate some base B
with a precision ofp to show how the values should be kept. Although it
may not be a problem it needs to be investigated, especially the affects that
the change of precision has on the accuracy of the values.

The next series of tasks that V&V must perform to fulfill interface
analysis requirement 3.2.4 deal with extracting the performance needs of
the system and assessing the interfaces to assure that they can meet those
performance constraints. These tasks, task 6 and 7, can become a very
specialized assessment and resource intensive. If you are in the require­
ments and design phases then the V&V team must take a modeling and
possibly a simulation approach. If the software has been developed then
static analysis can be used or the software can be executed to extract the
performance behaviors.

Let's tackle the latter problem because I feel that performing this task
during the implementation phase or beyond is more mature than the for­
mer. The V&V team has several approaches that they can take. They can
use a logic analyzer to measure the execution time of each module. One
advantage is that this approach will take into account hardware latencies as
well as other delays that occur that sometimes are missed when focusing
solely on instruction execution times. The major drawback is that the

118 Chapter 3

V&V team has to have hardware in the loop, which means they will need
to schedule time in the developer's labs to perform the assessment.

Another approach that can be taken is to count the instructions and sum
their execution times. Again this approach requires the source code and it
needs to be assembled. Once you have the assembly code then the loading
time can be computed for the cycle. Take each instruction and label it with
its execution time (e.g. floating point instructions normally take 40 micro­
seconds to execute), take the longest path possible through the code and
add the execution times.

One last approach that can be used is to instrument the code, calling the
systems clock, and measuring the times of execution for transmission
across the interfaces. Again, this requires executing the code and emulat­
ing the hardware. It also presents another problem to the V&V team in
that the instrumented code now has to take into consideration the newly in­
serted instructions. If they are not cleverly placed then they can create is­
sues that are not normally experienced with the original code.

The previous paragraphs dealt with the software already implemented
and available to the V&V team. What can we do if we are in the require­
ments phase? Well we can model the requirements and analyze the times,
providing best guesses when needed, for transmissions across the inter­
faces and determine if this will meet the needs of the system. Sequence
diagrams and timing diagrams are very useful tools for performing this
analysis. Timing diagrams have been used for a very long time especially
by electrical engineers. A timing diagram is simply a graph with time
along the horizontal axis and the possible states of the software along the
vertical axis. Figure 3.12 shows an example timing diagram.

Software Verification and Validation 119

Fig. 3.12. Example timing diagram where time is represented on the horizontal
axis and the possible software states are represented on the vertical axis. The
events that trigger a transition between states is represented in the bubbles. The
vertical axis could also be used to represent tasks or modules.

Sequence diagrams are also very useful to represent the communication
between modules. They can be instrumented with time, algorithms, notes,
and etcetera. Both timing diagrams and sequence diagrams do require tool
support to be completely effective. You can create these diagrams using
any graphical editor but to actually perform the analysis requires the tools
to understand the semantics of the objects that make up the diagram so that
you can execute them. Figure 3.13 is an example sequence diagram.

120 Chapter 3

< $)

<s>

<s>
C$)

(v ^ fO!R

(37

CiS^

Fig. 3.13. An example sequence diagram for project MUGSEY 0x01. It depicts
the interactions and messages sent between modules if a fault was to occur during
operations. The real time extensions to modeling (e.g. Unified Modeling Lan­
guage) now enable the V&V groups to assess requirements and designs using
simple notations.

When you have the software architecture defined then you can incorpo­
rate some architectural design language to help model the architecture and
simulate the execution times. Again this is dependent on the format in
which the developers provide their artifacts and the resources that V&V
are willing to spend. These modeling and simulation approaches, dynamic
approaches, are very expensive for V&V to perform.

The last task that V&V must perform is to determine whether or not the
interface elements can be verified via testing. Section 3.4 goes into great
depth regarding testing, which all of the principles apply here. Even
though I refer you to that section I will add a few notes here. The one
thing to take away from this section is that to meet the interface analysis
requirement does not require the V&V team to actually test the interfaces.
What you have to do is determine if they are testable. The best way to do
that is to simply develop tests for the data items which will indirectly show
you which ones are not testable. The dependency browser that you used
previously comes in usefiil in executing this task. It not only shows you
which data items are of interest it shows you where they need to be tested,

Software Verification and Validation 121

which you can derive tests to execute those sections. For example, our ob­
jective for assuring that the system can identify and handle faults identified
one interface and data item of interest to be GPS communicating the posi­
tion data item w îth the guidance element. The V&V team needs to deter­
mine v^hether or not GPS and the guidance element can be tested.

In summary the V&V team fulfilled its interface analysis requirements
and provided insight into the quality of the interfaces by answering the fol­
lowing questions.

1) Do the developers have the right interfaces defined?
2) Are those interfaces completely described?
3) Are those interfaces used consistently throughout the system?
4) Do those interfaces maintain the performance needs of the system?
5) Are those interfaces able to be verified by testing?

Section 3.3 Phase Dependent Analysis

The purpose of the following sections is not to describe every possible
tool or approach available for performing V&V. The intent of the remain­
ing sections is to identify exactly what needs to be achieved when doing
V&V. I expect this knowledge to be used when selecting the appropriate
tools or methods for performing the V&V work. There are so many dif­
ferent techniques that can be used when performing V&V. For example,
when doing code analysis a lot of the time people think of it as running the
code through a static analyzer to look for faults. Believe me, this is not
V&V. It is a part of V&V but it is not complete. I feel what needs to be
first understood are the requirements that V&V must meet and then tools
and methods can be selected based on their coverage on those require­
ments.

The phase-dependent analyses can be generically referred to as technical
analysis. The V&V requirements are actually the same for each phase of
the life-cycle. This sounds unbelievable but it's true! During each of the
phases; requirements phase, design phase, implementation phase, and test
phase the V&V requirements are all the same. They are depicted in Table
3.10. Just as we saw in traceabilify analysis the only difference does not
lie in the requirements it lies in the domain in which the requirements are
applied. So for example, during requirements analysis, child elements are
replaced with software requirements and parent elements are replaced with
system requirements. For each phase you simply change the name of the
element according to the phase in which you are in.

122 Chapters

Table 3.10. Technical requirements that V&V must fulfill for each phase of the
development life-cycle.

Requirement V&V Requirement
No.

3.3.1 V&V shall assure the right child elements have been identified.
3.3.2 V&V shall assure the child elements satisfy the parent elements.
3.3.3 V&V shall assure the child elements are completely defined.
3.3.4 V&V shall assure that each child element is used consistently.
3.3.5 V&V shall assure the child elements comply with appropriate stan­

dards and engineering practices.
3.3.6 V&V shall assure the logic and computational precision satisfy the

needs of the system.
3.3.7 V&V shall assure all child elements are testable.

The core foundation from which V&V shall establish their results lies in
the structure of the requirements. Take a hard look at the requirements and
you'll see a simple transition. First V&V makes sure that the right things
are identified (i.e. the right requirements have been established). Then
V&V makes sure they satisfy their parent elements (i.e. the software re­
quirement satisfies the system requirement). Then V&V makes sure they
are completely defined. Then V&V makes sure they are used consistently.
Then V&V makes sure they comply with best practices. Then V&V as­
sures the performance constraints are met amd lastly V&V makes sure they
can be tested. This simple transition is not to be overlooked. It has been
built in to the requirements so that V&V never has to do rework without a
major change being performed by the project. For example, if V&V first
made sure that requirements were used consistently and then they made
sure the project had defined the right requirements then any missing re­
quirements would cause V&V to go back and assess consistency again. I
guess you can say that these temporal properties could be achieved via
scheduling the tasks appropriately, well that is true but instead I wanted to
build it into the requirements.

As I stated before, the requirements are the same for each phase of the
life-cycle. For each phase you simply change the name of the element ac­
cording to the phase in which you are in. In the remaining sections the re­
quirements are qualified for their particular phase. After the requirements
are refined for the particular phase I discuss any differences in approaches
that should be taken during that particular phase. You'll see that the ap­
proaches too are very similar across the phases and their main difference
lies in the format in which the artifacts are presented to the V&V team.
For example, during the requirements phase the V&V team will have to
assure the right software requirements have been identified. More than
likely, as input they will work on a text document with the requirements

Software Verification and Validation 123

written in the English language. During implementation phase the V&V
team will have to assure the right code elements have been identified.
More than likely, as input they will work on a flat file with source code
written in a particular programming language. The requirements that
V&V shall meet are the same. The difference is that during the require­
ments phase they will achieve the requirement on a text document and dur­
ing the implementation phase they will achieve the requirement on a .cpp
file. Figure 3.14 depicts the approach that I recommend taking when per­
forming V&V. The recommendation moves away from conducting V&V
manually towards a more dynamic approach in which modeling and simu­
lation is incorporated. The intent is not to remove the domain experts from
performing V&V; the intent is to arm them with better resources.

5yjfhvrtJ» MtxM

Fig. 3.14. Recommended approach for performing V&V. The circles with num­
bers in them represent the V&V requirement that is met by performing the certain
V&V task.

Let me summarize the approach that I am recommending. For all the
phases the V&V team is going to get some kind of artifact that represents
the system during that phase (e.g. software requirements specification).
Taking a dynamic analysis approach requires the V&V team to model the
system at the given phase, which means the team is going to have to de­
velop a model using the software artifacts provided. V&V will then have
to define the properties that they feel the system should exhibit. Together,
these properties and the model of the software are fed into a model checker
that explores whether or not those properties hold. Just in doing these
tasks the V&V team will have fulfilled five of the seven requirements. In

124 Chapters

fulfilling the requirements they assured the right elements have been de­
fined, they satisfy their parent elements, they are completely defined and
used consistently and the performance needs of the system are maintained
with the current set of software elements. The last two requirements that
need fulfilled are assuring the software elements comply with standards
and best practices and assuring the software elements are testable. For the
former I recommend a static analysis approach in which tools are em­
ployed to automatically scan the artifacts and flag areas of interest for the
domain expert to further explore. The latter requirement also needs tool
support however this support comes in the form of automatic test case
generation.

All in all this approach is surprisingly not that drastic of a change in
how V&V is currently done. You'll see a variety of approaches. Some
V&V projects simply bring in good people and have them manually re­
view documents. Other V&V projects not only adopt the approach de­
scribed above but in addition bring in the scientists to actually prove,
mathematically, that certain properties hold in the given system. Which
approach is the right one, that's the million dollar question. The reason
that I recommend the approach above is twofold. First it is feasible, the
technology exists and it is sound and has been proven. Second, it compli­
ments the developer's approach. This approach provides an additional
level of rigor that is not performed on the project simply because of budget
and schedule constraints. This is something that a V&V project can bring
to the development project that is unique and scientifically sound.

Section 3.3.1 presents requirements analysis and the requirements that
V&V must meet during that phase. Section 3.3.2 introduces design analy­
sis, section 3.3.3 introduces code analysis, and section 3.3.4 introduces test
analysis. For each section I identify exactly what needs to be achieved
from the analysis and then discuss the various approaches that should be
taken to perform V&V. The various approaches are organized based on
whether they are manual analysis, static analysis, dynamic analysis, or
formal analysis.

Section 3.3.1 Requirements Analysis

Requirements analysis is conducted by the V&V team to provide assur­
ance that the right software requirements have been identified, they satisfy
the needs of the system, they are consistent, and they can be verified by
testing. It is during the requirements phase that the development project
will establish what the software system is supposed to do. This phase of
the life cycle is the most critical and V&V can have the biggest impact by

Software Verification and Validation 125

fulfilling the V&V requirements for this phase. I firmly believe that if I
ever get "extra" money to perform V&V I would apply it to the require­
ments analysis phase. This has the biggest return for both the V&V effort
as well as the development effort.

The requirements that the V&V team must fulfill are identified in Table
3.11. These requirements drive the selection of tasks as well as the ap­
proaches that V&V can take. There are various approaches that V&V can
take to fulfill these requirements. From manually reviewing requirement
specifications, performing static analysis on the documents, modeling and
executing the specification and mathematically proving the existence or
omission of specific properties. During this phase of the life cycle the
V&V team has already established the system features of interest for the
V&V effort and they have confirmed that they have been allocated to the
software through traceability analysis. The V&V team has also assured
that interface requirements are adequate to support the needs of the system.
Now is the time to determine the technical merit of the software require­
ments. As you can see in Table 3.11, the requirements that V&V must fiil-
fiU are an essential measure to the development group regarding the qual­
ity of their requirements.

Table 3.11. V&V requirements that shall be fulfilled by the V&V effort during
requirements analysis.

Requirement No. V&V Requirement
3.3.1 .R V&V shall assure the right software requirements have been

identified.
3.3.2.R V&V shall assure the software requirements satisfy the sys­

tem requirement.
3.3.3.R V&V shall assure the software requirements are completely

defined.
3.3.4.R V&V shall assure that each software requirement is used con­

sistently.
3.3.5.R V&V shall assure the software requirements comply with ap­

propriate standards and engineering practices.
3.3.6.R V&V shall assure the logic and computational precision sat­

isfy the needs of the system.
3.3.2.R_̂ ^̂ _̂ _ _ assure^all softwarerequirementsar^testable

As stated in the introduction I am not prepared, nor is anybody, to dis­
cuss every available tool that exists on the market or in the research labs
for conducting requirements analysis. However, I will discuss what these
requirements mean and what needs to be achieved by the V&V effort for

126 Chapter 3

requirements analysis. This can then be used to identify the tools and
methods that the V&V team needs to use.

There are four approaches that the V&V team can take, each with dif­
ferent resource requirements and each having a different outcome. The
four approaches are manual analysis, static analysis, dynamic analysis, and
formal analysis. During the planning phase the V&V team has to be dili­
gent in planning for which approaches are going to be used for each analy­
sis being performed. This is not something to be decided upon later in the
project. Let me say that again, this is not to be decided upon later it has to
be planned for in the beginning. You'll see why when we discuss the ap­
proaches.

Manual analysis is simply a domain expert that is brought in to review
the software requirements. She relies solely on her experience and knowl­
edge. She studies the artifacts under scrutiny and she makes observations
that are based on that experience and knowledge. This is an expensive ap­
proach to take because domain experts are not cheap. The other disadvan­
tage to taking this approach is that you don't have a clear understanding on
whether the domain expert, through studying the requirements, met the
V&V requirements for this phase. The other disadvantage is that it would
be difficult to repeat the analysis and achieve the same results using differ­
ent analysts. For example, let's say I was brought it to perform require­
ments analysis and I need to fulfill the requirements identified in Table
3.11.

The problem that I am trying to answer in fulfilling the first requirement
is if the project has identified the right software requirements. A manual
approach limits the options that I have to solve this problem. I can brain­
storm before studying their software requirements and develop my own
requirements, data flow diagrams, or use cases. I can study an oracle that
has captured functionality from previous projects that are related to this
domain. I can study a similar project from the past to understand the func­
tionality that they defined and use this as part of my knowledge base. No
matter what I choose it is completely reliant on what I can think of, it's as
if I am the developer and I need to identify the requirements that I feel
should be present. Once I have defined them I will then compare that to
what the developers have come up with. This validation step is totally de­
pendent on being able to compare what is being built to something that
states what should be built. I can't advocate enough the need for an oracle
of knowledge that captures what has been built in the past so that we can
use it for our validation tasks on future projects. As an example, I would
expect an organization that does V&V to have requirements for a Watch­
dog Timer in some oracle so that I can use during my validation tasks.

Software Verification and Validation 127

The problem I am trying to answer in fulfilling the second requirement
is whether or not the defined software requirements satisfy the system re­
quirements. Manually this can be almost impossible. Simply because it
comes down to a gut feeling as to whether the software requirement can
meet the needs of the system. Analytical approaches are sometimes lim­
ited with the complexity of requirements, especially if the requirements are
written in the English language. As an example, we have a software re­
quirement that states that it needs to scrub memory and correct single bit
upsets and detect multiple bit upsets every 5 seconds. It is suppose to be
satisfying the system requirement that needs no failure in the system to
keep science readings from being taken for longer than 5 minutes. This is
a difficult job for an analyst to determine whether scrubbing memory every
5 seconds is adequate to meet the needs of the system. They would have
to take into consideration the radiation environment that will be experi­
enced during operations, the hardware specifications regarding their mate­
rial, the load on the processor when scrubbing is taking place, the run-time
of the scrubbing algorithm, etcetera. Analytically this is a very resource
intensive job, it is possible to solve but extremely time consuming. Before
everyone starts arguing with me that they could solve that problem analyti­
cally I'll concede now. I wanted to get your attention. The main point is
that just manually reviewing the document is not going to completely ful­
fill the V&V requirements for this phase.

The third problem that I need to solve to fulfill the third requirement is
to determine whether or not the software requirements are completely de­
fined. There are various interpretations for the word complete and how
that applies to requirements. First, we could solve this problem by manu­
ally reviewing the software requirements against a standard checklist. For
example, have they defined the units of measure for all values represented
in the requirement, have they identified the input and the output for the
function being described as well as the source of the input? Have they
identified the accuracy needed in the measure that they are taking? These
types of checklists can be covered by a manual review. However, I think
that these checklists do not cover another aspect to what the V&V re­
quirement is demanding. For a requirement or requirement set to be com­
plete the functionality that the requirement is describing has to be com­
plete. So if there are different states that the particular requirement is
associated with then are all the states and how they transition defined?
This is difficult to determine manually and you'll see in later paragraphs
that there are methods that exist to help in doing this so there is no reason
to do this manually.

I am going to leave the manual analysis discussion and jump right into
how I think V&V should approach fulfilling their requirements. The rea-

128 Chapters

son is this, the technology exists and we should be using it. Not to replace
the analyst but to help them do their job even better than they have done it
in the past. I recommend that the approaches in Table 3.12 be used v^hen
performing requirements analysis.

Table 3.12. Recommended approaches to fulfilling the V&V requirements during
requirements analysis

Requirement V&V Requirement V&V Approach

3.3.1 .R V&V shall assure the right software require- Dynamic Analysis
ments have been identified. and Formal Analysis

3.3.2.R V&V shall assure the software requirements Dynamic Analysis
satisfy the system requirement. and Formal Analysis

3.3.3.R V&V shall assure the software requirements Manual Analysis and
are completely defined. Static Analysis

3.3.4.R V&V shall assure that each software require- Static Analysis
ment is used consistently.

3.3.5.R V&V shall assure the software requirements Static Analysis
comply with appropriate standards and engi­
neering practices.

3.3.6.R V&V shall assure the logic and computational Dynamic Analysis
precision satisfy the needs of the system.

3.3.7.R V&V shall assure all software requirements Static Analysis
are testable.

Dynamic and formal analysis is precisely where V&V should be in per­
forming requirements validation. I simply chose both approaches because
it is difficult to distinguish between the two sometimes. For example, if I
model my requirements using the SCR tool set I am taking a formal ap­
proach to modeling the requirements. However, one of the benefits of us­
ing this methodology and tool set is that it has a simulation capability that
will allow you to execute the model, a dynamic analysis approach. Instead
of trying to differentiate between the two I chose not to waste the energy.
The simulation capability has the ability to identify the differences be­
tween what the V&V analysts perceive the requirements to be and the be­
havior captured in the software requirements. The model in Figure 3.15 is

Software Verification and Validation 129

the recommended approach to fulfilUng three of the seven V&V require­
ments (requirements 3.3.1.R, 3.3.2.R and 3.3.6.R).

Kki&A Ch#Ck^f
<M^\ R^pOil

Fig. 3.15. Recommended approach to fulfilHng V&V requirements 3.3.l.R,
3.3.2.R, and 3.3.6.R. The V&V team models the software requirements, they then
define properties that the system should display and they run these two through a
model checker to determine if the modeled software requirements actually display
the properties that the V&V team have defined.

The first task needed when taking this approach is that the V&V team
has to model the software requirements using the language of the model
checker. The abstraction techniques that most modeling languages provide
are an advantage to taking this approach. The disadvantage is that the ana­
lysts now have to learn not only the language of the model checker they
have to become familiar with the model checking process itself. However,
I believe that applying this effort up front will enable a more complete and
less complex V&V activity. The other disadvantage that you have to be
aware of is that once you have the software requirements modeled in the
appropriate language then you have to put in place a mechanism to main­
tain this model. Requirements change, as such your model will have to
change. The second task that V&V needs to perform is defining the prop­
erties that the software is expected to satisfy. So for example, if our sys­
tem was responsible for monitoring and responding to excessive pressure
conditions and temperature conditions then the V&V analysts may define
the following property:

,t- D<f<t.Vx essure{t') > Max Pr essure A Temperatureif) > MaxTemperature —> Danger{t)\

All this simply says is that for every instant t* in the interval [t-D,t], if
pressure is greater than the maximum pressure allowed and temperature
readings are greater than maximum temperature readings allowed then at
time t the system transitions into a danger state. In this instance, danger

130 Chapters

initiates recovery measures. This is not verbatim from the book but I
highly recommend reading the book Formal Methods for Real-Time Com­
puting (Heitmeyer and Mandrioli 1996). My point in showing this exam­
ple is that instead of the V&V analysts identifying requirements that they
feel should exist they take a different approach and state the properties that
the system shall exhibit. To me this capability is something that the devel­
opment project does not and probably can not perform, given their budget
and schedule constraints. The last task performed is to provide these
items, the properties and the requirements model, as input to the model
checker. The model checker determines whether or not the model satisfies
the property. I seem to be a broken record but I have to say it again, it
would be beneficial for V&V organizations to build repositories on things
they care about. In the previous example, the V&V properties should be
retained to be used again so that we don't always have to think up and
write the properties that we care about.

A more static analysis approach is recommended for requirements
3.3.3.R and 3.3.4.R. For these two requirements the V&V team is con­
cerned with assuring that the software requirements are completely defined
and used consistently. There has been promising advancement in the area
of static analysis and the use of tools to aid the domain expert in this as­
sessment. One such area was in the tabular-based SCR method to specify
requirements (Heitmeyer 1998). This type of method provides the capabil­
ity to assure completeness and consistency with the requirements to some
degree. The tabular-based method for specifying requirements may not be
amenable to all types of requirements (e.g. memory scrubber) however it
seems directly applicable to the control-type requirements that we are
faced with in our critical applications (e.g. watchdog timer). One thing to
note here is that in fulfilling the completeness requirements, the SCR ap­
proach focuses heavily on states and state transitions represented in the re­
quirements. The same approach can then be integrated into the model
checking discussed in Figure 3.15.

Static analysis approaches are recommended for meeting V&V require­
ment 3.3.5.R where the V&V team shall assure the software requirements
comply with appropriate standards and engineering best practices. The
reason that I suggest a static analysis approach is that tool support would
greatly alleviate the burden on an analyst in checking requirements as to
whether they follow a particular standard or best engineering practices.
Tools that scan a requirements document and point out the inconsistencies
between the identified standard and the document under evaluation should
not be difficult at all to build. Key point though, they haven't been built
and they should have. One of the problems though is what standard should
be enforced? Well I would say we shouldn't identify one. The tool or

Software Verification and Validation 131

tools should be configurable to the standard to which the project is using.
So a configuration file would be needed to identify the standard to which
the requirements document is compared against. There are other tools that
also do automatic scanning that identify areas of the requirements that may
or may not meet "best engineering practices". Things that these tools look
for are the use of "TBDs" as well as an assortment of ambiguous terms.
These types of tools greatly aid the analysts in meeting this one require­
ment.

The last requirement that needs to be met by the V&V team is require­
ment 3.3.7.R which provides assurance that all the requirements are test­
able. A static analysis approach is chosen to meet this requirement simply
because there are tools that exist that automatically parse a requirements
specification and generate test cases. The analyst could then take this set
and identify which requirements that test cases could not be generated for.
This tool support is concentrated on those requirements that are already de­
fined in some tool (e.g. MATLAB). When you have requirements that are
already defined in a particular language then you need to seek tools that
support that language. For those requirements that are specified in a text
document using the natural language then the task becomes a bit more
manual. At a minimum, if you have to manually determine whether a re­
quirement is testable run it against the following checklist. For the re­
quirement under evaluation:

• Has it identified the state that the system is in?
• Has it identified the data that the requirement must act on?
• Has it clearly identified the action that the requirement is to perform?
• Has it identified the desired results of the action specified?
• Has it identified how other aspects of the system may be affected?

This is a very generic but solid checklist to use if you have to manually
determine if a requirement is testable. I would suggest the following ap­
proach. For those software requirements that are within scope that have al­
ready been modeled in a specific language (i.e. you have fulfilled the first
three V&V requirements by modeling the system and running the model
through a model checker) then use tools that automatically generate test
cases. For those software requirements that are not being modeled using a
specific language then apply the basic checklist from above.

Figure 3.16 is a complete overview on how I would approach require­
ments analysis in order to fulfill the V&V requirements for this particular
phase. You can see in the figure those circles with numbers in them.
These circles are associated with a specific task that is fulfilling the par­
ticular requirement. This approach is something new and has only been

132 Chapter 3

done minimally across projects. Formal methods are the buzz words that
are sometimes associated with this approach but I would suggest this is not
the case. It is more of a modehng and simulation approach that has its un­
derlying theory being formal methods.

Fig. 3.16. Overview of requirements analysis tasks that fulfill the V&V require­
ments for the phase.

If you choose to employ this approach for requirements analysis then
there are three things you have to be aware of First, it can become a con­
figuration management nightmare if your models become very large and
the development project is constantly changing their requirements. This
can be a challenge because you have to ensure your models accurately re­
flect the software requirements. The second point is that if your modeling
discovers issues then you have to make sure it wasn't your models that
caused it. There is some additional effort needed to ensure that it wasn't
your model that caused the issue to surface. Lastly, there is going to be a
lot of effort spent up front in building the models as well as maintaining
them. I don't believe the data exists to show that it is well worth spending
the resources early on in the V&V project. All I can say is that from an
engineering perspective, this approach allows the V&V team to bring re-
peatable practices to the table that the development project will not plan to
do.

Software Verification and Validation 133

Section 3.3.2 Design Analysis

The design phase is the period in the development Hfe-cycle where solu­
tions to the software requirements are established. Designs as well as data
constructs are established and linked to the specific software requirements
in which they are the solution. Design is an iterative process through
which requirements are translated into a 'blueprint' fox constructing the
system. Design begins with the requirements model to which it is trans-
ft)rmed into 4-levels of design detail:

• The data structure
• The system architecture
• The interface representation
• The component level detail

Traditionally the data design transft)rms the information domain, from
the requirements phase, into the data structures that will be required to im­
plement the system. The inputs ft)r the development team are the data dic­
tionary and the Entity-Relationship (ER) diagrams. The architectural de­
sign defines the relationships between the major structural elements of the
system. The input for doing this is usually the data flow diagrams (DFD).
The interface design describes how the software communicates within it­
self, with other systems, and with users. The inputs to developing this are
the DFDs, control specifications (CSpecs), and state transition diagrams
(STD). Lastly, the component level design transforms structural elements
of the architecture into a procedural description of the software compo­
nents. The inputs to this are process specifications (PSpecs), STDs, and
CSpecs.

It is during this time that the V&V team gets to assess the potential solu­
tion for the system. In the past, design analysis has been largely ad hoc.
But I don't think that is mainly the fault of V&V, I also believe that soft­
ware engineering is not as advanced in building designs or shall I say,
documenting their designs. You may get certain scientific papers that de­
scribe the algorithms chosen for a particular design but I have not seen a
complete software design for any project that I have ever been a part of
The V&V requirements for design analysis are presented in Table 3.13.

Table 3.13. V&V requirements that must be fulfilled during design analysis.

Requirement V&V Requirement
No.

3.3.1 .D V&V shall assure the right design elements have been identified.
3.3^2.D J/&Vjhalljissure thjê design element̂ satisfies the software^re-

134 Chapters

quirements.
3.3.3.D V&V shall assure the design elements are completely defined.
3.3.4.D V&V shall assure that each design element is used consistently.
3.3.5.D V&V shall assure the design element complies with appropriate

standards and engineering practices.
3.3.6.D V&V shall assure the logic and computational precision satisfy the

needs of the system.
..^—•^J-^ V&VjhaH^asgur£al^

As stated before, the requirements presented in Table 3.13 are very
similar to those presented during the requirements phase. Their only dif­
ference is the domain in which they operate. The requirements for re­
quirements analysis focus on software requirements and system require­
ments. Those identified in Table 3.13 focus on software design elements
and software requirements.

It is possible that the development group has used some design tool in
order to architect a solution. This would have been revealed during the
planning phase when input analysis was conducted. The analysis would
have also determined whether or not the design tools had capabilities to
perform the assessments that V&V needs to perform. Basically if the de­
velopment team is using a tool to build the system then it probably has a
modeling capability, this capability needs to be explored by the V&V team
to determine if they can use it or they may need to translate the design into
other formats.

So whichever format or method is chosen it must provide the capability
to perform data flows, control flows, state transitions, and evaluations of
algorithms. We are not done yet, it must also be able to present the behav­
ior of the proposed solution as well as the timing attributes of its compo­
nents. More than likely the V&V team will need to translate the devel­
oper's design into a format that provides the above capabilities. The same
approach applies during design analysis as it did during requirements
analysis. In figure 3.171 present the approach for design analysis.

Software Verification and Validation 135

Fig. 3.17. Overview of design analysis tasks that fulfill the V&V requirements for
design analysis.

So if sequence diagrams are used, state charts, or mealy machines, it
does not matter. V&V has to put together an approach that fulfills the re­
quirements presented in Table 3.13. A number of architecture description
languages (ADLs) also exist for use by the V&V team. The majority pro­
vide mechanisms for describing the design components and the relation­
ships with each other and the hardwetre being used in the system. The
hardw^are being used has to be included in the assessments that V&V per­
forms. In fulfilling their requirements V&V must take a systems approach
towards assessing the design. This perspective is the first look at whether
or not the proposed software solution can meet the needs of the system.

Section 3.3.3 Code Analysis

Code analysis is another bread and butter capability that V&V provides
to the development project. The development project does not normally
have the resources to explore all the potential problems that can be experi­
enced during software execution. Also, small programming teams are
normally employed that only focus on their area of development. During
this time V&V is focused on determining how well the code conforms to
the overall design specification and system requirements. Their objective
is to determine the overall quality of the code. As such, V&V's require­
ments during code analysis are presented in Table 3.14.

136 Chapter 3

Table 3.14. V&V requirements that must be fulfilled during code analysis.

Requirement V&V Requirement

33AJ V&V shall assure the right code elements have been identified.
3.3.2.1 V&V shall assure the code element satisfies the design element.
3.3.3.1 V&V shall assure the code elements are completely defined.
3.3.4.1 V&V shall assure that each code element is used consistently.
3.3.5.1 V&V shall assure the code element complies with appropriate stan­

dards and engineering practices.
3.3.6.1 V&V shall assure the logic and computational precision satisfy the

needs of the system.
3.3.7.1 V&V shall assure all code elements are testable.

I truly advocate the dynamic approaches that we have been discussing in
the last two sections. However, I realize that there are a lot of organiza­
tions that take a manual approach to analyzing code. One step further is
that some take a static analysis approach by scanning the code looking for
common programming problems (i.e. variables are not initialized before
they are used). I don't have a problem with these approaches but we have
to take note that these approaches alone do not fulfill the requirements for
V&V. Excuse my generics but there are a lot more things that V&V must
do. Figure 3.18 is the recommended approach to fulfilling the code analy­
sis requirements levied upon V&V.

-i-VAfW

\/
"l^^ri)

f

Fig. 3.18. Recommended approach to fulfilling the V&V requirements for code
analysis.

Software Verification and Validation 137

The approach is quite similar to that taken for design analysis and re­
quirements analysis. The V&V team takes the source code and models it.
Modeling in this sense may not mean translating every line of code into
another format. Simply instrumenting the code with assertions could be a
model. Modeling the code using the language Promela is another model.
The point is that some representation has to be developed so that its behav­
ior can be assessed. Again, we are trying to fulfill the code analysis re­
quirements which the first two are to assure the right software modules
have been identified and that they satisfy the design modules. This in­
volves answering the question is the function,/oo (9, the right function for
the system. If so, does it satisfy the needs defined by design module X7
The V&V analyst could use the design module to drive the development of
assertions that check the input and output conditions. This can be consid­
ered a black box approach. Other assertions could be instrumented inside
the code to validate the performance constraints identified by the design.
If there are memory constraints identified by the system then the analysts
can take the assembled code and parse it to identify all the pushes and pops
to the stack to determine the amount of memory being used in specific in­
stances of time. There are numerous methods that can be employed as
well as tools to support them. The purpose of this section is to try and get
across that dynamic analysis mixed with some static is the preferred ap­
proach.

The techniques that I want to discuss in this section are the ones that dif­
fer from the recommended approaches displayed in Figure 3.18. They
don't totally differ from that approach but they are more manual in nature
and require some discussion. The technique is software inspections. In­
spections have been around since the 1970s and are still being used effec­
tively. To put into a V&V perspective, inspections can fulfill all of the
code analysis requirements but I would argue they can not fulfill them to
the desired level of rigor. Inspections can also be used in the approach de­
picted in Figure 3.18 when fulfilling requirements 3.3.5.1 and 3.3.7.1.
These requirements deal with assuring the software complies with stan­
dards and best practices and assuring that the software is testable. Inspec­
tions can be quite useful in meeting these two requirements.

During a software inspection, small groups of analysts study work prod­
ucts independently and then meet to examine the work in detail. Work
products are small, but complete, and analysts typically spend one to four
hours reviewing the work product and related information before the in­
spection meeting. They were originally developed at IBM in the early
1970s (Fagan 1976). The traditional inspection process is comprised of
the following steps:

138 Chapters

• Planning - When a work product is complete, an inspection team is
formed and a moderator is designated. The moderator ensures the work
product satisfies the inspection entry criteria (i.e. code must be able to
be compiled without error). Roles are assigned to the inspection team
members, copies of the work product and related materials are
distributed, and an examination meeting is scheduled.

• Overview - If inspectors are not familiar with the work product then an
overview presentation is given by the author of the work product. Its
purpose is to educate the inspectors and the moderator conducts it and
the author presents the material.

• Preparation - Inspectors prepare individually for the examination
meeting by thoroughly studying the work product and related materials.
The objectives are to find as many defects as possible. There are
various defect detection techniques that an inspector can employ, such
as checklists.

• Examination - This is the meeting where the inspectors review the work
product together. No time is spent discussing why defects occurred or
how to correct them and only the work product is under scrutiny;
criticism of the author must be avoided. All detected defects are
classified and recorded. Examination is limited to a maximum of two
hours. At the end of the meeting the team determines if the work
product is acceptable as is, should be reworked with the moderator
verifying the results, or reworked and then re-inspected.

• Rework - The author corrects all identified defects.
• Follow-up - The author's corrections are checked by the moderator. If

the moderator is safisfied, the inspection is officially completed.

Since Pagan published his software inspection process, many organiza­
tions have experimented with, and modified, aspects of the process to fine-
tune it to their environment. Others have modified changes to the ap­
proach (e.g. preparation step above) where instead of just finding defects
the inspectors achieve an objective when reviewing the code (i.e. perspec­
tive based). I totally advocate this modification if your V&V group is go­
ing to use inspections or pseudo-inspections to fulfill the requirements of
code analysis. The reason that I say this is that you will not achieve those
requirements by simply conducting an inspection. For example, the sec­
ond requirement that V&V must fiilfill is assuring that the software satis­
fies the design. Conducting a code inspection to just look for defects does
not satisfy this requirement. If you were to use a code inspection then two
things would have to happen. First, the analysts would have to inspect the
code with an objective of assuring the code satisfies the design. Second,
the analysts would have to have some kind of tool support to fulfill the in-

Software Verification and Validation 139

spection. Inspections have traditionally been manually performed and to
determine whether a module of code satisfies a particular design module is
not easy to do manually.

Why did I spend so much time talking about inspections? If the V&V
team elects to perform code analysis manually then they would be per­
forming an inspection-like task. You can do this, although I don't advo­
cate it given the technologies that exist today.

The other topic that I briefly mentioned above is tool support. When
trying to find issues in the code as well as to assure the software complies
with standards and engineering best practices there are an assortment of
tools that exist that automatically checks the code. These tools help do­
main experts by flagging potential defects as well as aiding in the under­
standing of the code. Others methods that help out when taking the ap­
proach depicted in Figure 3.18 are assertion-based analysis which helps
identify behaviors in the code to modeling in Promela and running the
model through SPIN. The reason that I advocate the approach in Figure
3.18 is that the development projects can run their code through any avail­
able static analyzer. However, development is not going to analyze the
code from a dynamic analysis perspective (e.g. software models repre­
sented in Promela and executed by SPIN). These activities not only fulfill
the code analysis requirements they incorporate a different perspective that
the developers will not have.

Section 3.3.4 Test Analysis

Test analysis is the time in which the V&V team determines whether or
not the system is being tested adequately. Whether it is component testing,
integration testing, system testing or acceptance testing that the V&V team
is assessing, their objectives remain the same. Are they testing the system
adequately? Now you are wondering what adequately means. The re­
quirements that V&V must fulfill during test analysis are presented in Ta­
ble 3.15. As usual you'll see that these requirements are very similar to all
of the analyses that we have discussed. But again, their difference is that
these requirements are focused on the test artifacts as well as the artifacts
that they are testing.

140 Chapter 3

Table 3.15. V&V requirements that must be fulfilled during test analysis.

Requirement V&V Requirement

3.3.1 .T V&V shall assure the right test cases have been identified.
3.3.2.T V&V shall assure the test case satisfies the unit under test.
3.3.3.T V&V shall assure the test cases are completely defined.
3.3.4.T V&V shall assure that each test case is used consistently.
3.3.5.T V&V shall assure the test case complies with appropriate standards

and engineering practices.
3.3.6.T V&V shall assure the logic and computational precision satisfy the

needs of the system.
3.3.7.T V&V shall assure all test cases are testable.

Let's not get hung up on the terminology. If you don't call them test
cases or if you call them test procedures then it doesn't really matter. The
point is whatever you are using to exercise the system to show that the unit
under test has been developed adequately then that is what V&V is con­
cerned with.

The first two tasks that need to be performed are associated with re­
quirements 3.3.1.T, 3.3.2.T, and 3.3.6.T. This is where the V&V analysts
have to identify what test cases need to exist based on the unit under test.
Figure 3.19 puts this into perspective.

Software Verification and Validation 141

%
'

D»«i?jn M(K1«{ Sy^tj^n McK }̂ Opw t̂kx??^ Ui^M

Fig. 3.19. Flow chart for determining what tests should be defined as well as
whether the test adequately covers the unit under test.

As you can see in Figure 3.19 if the unit under test is a software compo­
nent then the analysts need to identify the test that they feel should exist.
So for example they may feel that every control branch in the software
component should be exercised by the component tests. They would either
manually develop the specific tests needed to do this or they would incor­
porate a tool. Actually, no way in this word they would do this step manu­
ally. Tools exist, so use them. This would be considered the test set that
V&V recommends. They would then compare this set of tests with those
engineered by the developers. Any inconsistencies would require explora­
tion on the part of the domain expert and may result in V&V issues. This
approach also covers the second V&V requirement in which V&V is to as­
sure that the test adequately covers the unit under test. This basically
means does the test exercise the component, integrated components, sys­
tem needs, or operational needs adequately. If you can show that the test
cases engineered by the developers are the same or refine those engineered
by the V&V team then you can conclude that the test satisfies the unit un­
der test. If not then V&V would author issues describing the shortfalls.

142 Chapters

V&V requirement 3.3.3.T demands that V&V shall assure the test cases
are completely defined. This could be performed manually by assessing
each test case against a checklist. However, tools exist, not many at this
point in time, to aid an analyst during this step. If you were to use a check­
list then the following items need to appear in that checklist. At a mini­
mum the test shall identify the following:

• The input required to execute the test
• The expect output of the test
• Any timing properties that need to be identified (i.e. especially if this is

an integration test or system test)
• The objectives for the test
• The features of the system to be tested (i.e. provide links back to

specific items (e.g. system requirements))
• The pass/fail criteria
• Environmental needs for executing the test

- The necessary properties of the test environment
- The physical characteristics of the test facilities
- Additional tools needed during test execution

• How the measurements will be obtained and compared against pass/fail
criteria

Successfully passing through the checklist will show that everything
needed to be defined by the test is present. Again, this can be statically
checked by tools and omissions can later be evaluated by V&V analysts.

V&V requirement 3.3.4.T provides assurance that each test is used con­
sistently. What this means is that once the tests are established and shown
to be complete they have to be used consistently every time. I have seen
instances where the same test was run under certain environmental condi­
tions (i.e. first with other components turned on) and then ran the second
time with different environmental conditions (i.e. components turned off).
They are using the same test but they are not using it consistently. Unfor­
tunately I have only performed this step manually. I have not come across
any systems tool that allowed an analyst to browse all the available tests.

The next requirement that needs to be met has again only been per­
formed manually. V&V requirement 3.3.5.T provides assurance that the
tests comply with standards and best practices. Could there be tool support
in this area, of course. IEEE has for a long time documented the standard
approaches to developing test documentation. Tools could be built that
wrap around these standards to check for compliance. This step could also
be coupled with those that fulfill requirement 3.3.3.T.

Software Verification and Validation 143

The last requirement that V&V must fulfill is V&V requirement 3.3.7.T
which provides assurance that the tests themselves are testable. Say what?
Well what this means is that the V&V analyst needs to answer the follow­
ing three questions:

• Are the tests capable of simulating actual operating conditions?
• Are the fidelity of the models established and maintained?
• Is the test environment under configuration control?

The answers to these three questions will indicate whether or not the
proposed tests can actually be executed to yield the desired results. If we
are resting on the fact that if the software passes the proposed tests then we
are a go for deployment then we need to understand the fidelity of the
tests. Fulfilling this last requirement will do just that.

Before we leave the technical analysis sections I want to make sure the
overall intent for these sections has been clearly communicated. In per­
forming V&V we have four basic approaches; manual analysis, static
analysis, dynamic analysis, and formal analysis. I am suggesting that the
requirements for each phase have to be fulfilled regardless of the chosen
approach. If manually reviewing the documentation is the chosen ap­
proach then the assessments have to take into consideration the V&V re­
quirements and ensure all seven of the requirements have been met. If
tools are selected then the V&V team has to ensure that the tools provide
adequate coverage on the V&V requirements. The V&V phase is not
complete until all requirements are met.

I am also suggesting that the V&V effort should take a more dynamic
approach to executing their tasks. What this means is that analysts should
reason more about the system's behavior during their analysis. Even if it
is informal reasoning or using formal reasoning, the intent is for the ana­
lysts to derive sample executions of the system to determine whether the
intended behavior has been captured. If the analysts go as far as develop­
ing models then these models even support the generation of test cases
automatically, which fulfill another V&V requirement.

For those that were expecting a complete listing of available V&V tools
then I apologize. By the time this gets printed there will be a new set of
tools to select from. I will admit that a more in depth assessment needs to
be conducted regarding all the methods available to V&V. This will be
follow on work that would greatly benefit the evaluation and selection of
V&V tools during project implementation. The overall intent for these
sections was to clearly state exactly what it is that V&V achieves during
their execution. I hope that this information alone will be valuable to the

144 Chapter 3

engineers and scientists in the trenches that are tasked with the job of mak­
ing sure the system operates as expected.

Section 3.4. V&V Testing

Testing the system from a V&V perspective is really no different than
the testing approaches used by the engineering community as a whole.
The main difference lies in the objectives that testing is trying to achieve.
For example, during development the developing organization will nor­
mally perform system testing in order to show that the system require­
ments have been met. On the other hand, the V&V team may perform sys­
tem testing in order to break the system or understand where the system
will break. These are two entirely different test strategies with only simi­
larities in the way tests are developed.

Testing is the process of analyzing a software item to detect differences
between existing and required conditions. It is also a valuable approach in
evaluating the features of a system. It is an effective approach for probing
for errors and weaknesses that reveal hidden faults. This is the greatest
benefit that the V&V team can bring to the project during testing. The
project is so focused on providing a useable system that sometimes their
test strategies are only focused on showing that the system meets the user's
needs. Where V&V is not concerned with delivering a system they are
concerned with finding errors and weaknesses in the system.

This section is not a complete lesson on how to test software. It has
been condensed to provide an overview since there is a wealth of informa­
tion that exists in this domain. The intent of this overview is to put into
perspective the few testing approaches that a V&V team may elect to take.
A few examples are also given to improve on understanding. You can take
this section as an overview to help guide you in establishing test plans and
approaches.

Testing can be performed during each phase of the life cycle. During
each phase, specific types of tests and their associated artifacts are devel­
oped. There are four types of tests that V&V can perform and they are de­
scribed in Table 3.16.

Table 3.16. Different types of testing that can be performed by V&V.

Component Conducted to verify the implementation of the design for one
software element (e.g. unit, module).

Integration Conducted to verify the integration of software elements until it

Software Verification and Validation 145

results in a complete system.
System Conducted to verify a completely integrated software system with

its hardware components under simulated conditions.
Acceptance Conducted to determine whether or not a system satisfies its ac­

ceptance criteria and to enable the customer to determine whether
or not to accept the system.

These different types of tests are conducted at specific times during the
life of the project. For example, component testing is conducted during
the implementation phase. Integration, system, and acceptance testing is
conducted during the test phase. Even though the execution of these tests
occurs during those specific phases, there are additional tasks that V&V
have to perform in order to prepare for testing. Test plans, test designs,
test cases and test procedures all need to be developed. Developing these
artifacts is performed throughout the life cycle, which is shown in Figure
3.20 and taken straight from IEEE standard 1059-1993.

V&V Task

Test Plan
Generation

Test Design
Generation

Test Case
Generation

Test Procedure
Generation

1 Test Execution

Requirements

Systern Tests

Acceptance Tests

Design

Component Tests

inteQf3t!on Tests

Component Tc-c*is

lntegro-Lii.'«n Tests

System Tests

Acceptance Tests

implementation

Component Tests

integrstion Tests

System Tests

Acceptance Tests

Component Tests

lntegia*Jon Tests

S'ystem Tests

Component Tests

Test 1

Acceptance Tests j

integration Tests j

System Tests

Acceptance Tests j

Fig. 3.20. V&V testing activities distributed across the life cycle. System test
plans and acceptance test plans are developed during the requirements phase.
Component test plans and integration test plans are developed during the design
phase. Also during the design phase, test designs for all of the types of testing are
developed.

As you can see in the figure, V&V testing activities are performed dur­
ing specific phases of the life-cycle. System test plans and acceptance test
plans are developed during the requirements phase. Component test plans
and integration test plans are developed during the design phase. All test

146 Chapter 3

designs are generated during the design phase. All test cases are generated
during the implementation phase. All test procedures, except for accep­
tance tests, are developed during the implementation phase. Also during
the implementation phase the component tests are executed. The rest of
the tests are executed during the test phase.

There are two approaches that can be taken to test a system, subsystem,
or component and they are black box testing or white-box testing. Black
box testing, or functional testing, is where tests are derived from the speci­
fication of the software. White box testing, or structural testing, is where
tests are derived by considering the internal logic of the system. Black box
testing is favored by the developers, since they focus mainly on showing
that the specification has been met. V&V takes more of a white box test­
ing approach because they are exploring the system's weaknesses in search
of errors. It also seems logical that system tests and acceptance tests are
more amenable to black box testing while component and integration test­
ing seems to be associated more with white box testing. The rest of this
section details the two approaches.

The astute reader is probably wondering about regression testing. Re­
gression testing is performed normally after changes are made to the sys­
tem or in addition to integration tests with the sole purpose of showing that
that the original functionality has not been harmed with the preceding
events. The reason that I have not included it in this discussion is that re­
gression testing is more of a development activity and not normally per­
formed by V&V. As such, I am hesitant to include it as one of the basic
approaches for implementing V&V tasks.

Taking a black box approach to developing tests requires using the re­
quirements documents and design documents. To proceed with a black
box approach to testing requires seven generic tasks to be performed be­
fore any tests can be developed. The following list identifies these generic
tasks to be taken for black-box testing:

• Study the requirements and identify each potential function.
• Identify any additional functions that may not have been documented.
• Identify the performance attributes or design constraints for the

functions/components to be tested.
• Identify any operational procedures associated with the functions.
• Identify each state and each valid transition for the fiinctions.
• Identify input and output data structures for the fiinctions.
• Identify the arrival rates, formats, valid and invalid ranges for the

functions.

Software Verification and Validation 147

Once this pre-work has been completed and the information generated
then there are three basic ways that the V&V teams can use black box
testing; equivalence partitioning, boundary value analysis, and cause and
effect graphs.

Equivalence partitioning is based on the notion that specifications and
designs sometime partition the set of all possible inputs and outputs into
classes that receive equivalent treatment. These inputs and outputs result
in two or more types of values, valid and invalid equivalence classes. So
for example, the V&V analysts need to partition the program domain into a
small number of equivalence classes and develop tests that provide cover­
age on each class. This is an inductive approach where conclusions about
the entire input and output domain can be drawn from the behavior elicited
by some representative members of it.

Boundary value analysis is a variant of equivalence partitioning and is
based on the observation that software often fails at boundary values. As
an example, functionality may indicate that temperature readings may
range from -300 to +300 degrees Fahrenheit. Boundary value analysis
would establish tests that not only include temperature readings of -300
and +300 but would also include values such as -301 and +302. The types
of tests that are generated from this approach are those that explore the be­
havior of the system outside its design envelope. Rather than testing some
random element from each equivalence class, boundary value analysis
concentrates on the extreme values from each class

One weakness of the equivalence classes and boundary value analysis is
that they do not test combinations of inputs and/or outputs. Cause and ef­
fect graphs are used to find those interesting combinations. Analysts can
link input classes (cause) to output classes (effect) which will yield a di­
rected graph. This graph is then used to develop tests.

White box testing focuses on testing the actual implementation, and the
goal is to achieve full coverage of the component being tested. At this
point in time the V&V team has to decide what coverage means to them.
Coverage can be represented by number of statements, number of
branches, or number of paths being visited during execution of the pro­
gram. To aid the analysts in developing tests using a white box approach,
a control flow graph (CFG) is essential. Nodes will denote actions (e.g.
statements) and directed edges connect actions with subsequent actions in
time. A path is a sequence of nodes connected through edges. Figure 3.21
is an example CFG for the following listing of code. The code is an im­
plementation of the binary search algorithm.

148 Chapters

int binSearch(float inArrayf], float findMe, int size)

{
1) int left = 0; //Left side of the array
2) int right = size-1; //Right side of the array
3) int arrayMiddle = 0; //The middle of the array

//Epsilon is the accuracy value: Since we are dealing with
//real numbers comparisons on real numbers is risky (0.333 != (1/3))
//So this solution, subtracts the values in the array from what you
//are searching for, if the difference lies within epsilon, then they are
//close enough and are considered equal (e.g. 3.14 ^ 3.14159)

4) float epsilon = 0.006;

//The difference of the value in the array and
//the value we are searching for.

5) float delta = 0.0;

//Loop through the array until the left index has passed/the right index,
//this means we have traversed the entire /array without finding the value.

6) while (right >= left)

{
7) arrayMiddle = (left+right)/2;
8) delta = (findMe - inArray [arrayMiddle]);

//If delta is negative then we know the value we are searching for is
//less than the middle of the array. So shift the right index to the
//(middle -1) and convert delta to a positive number so that we can
//test it against epsilon.

9) if (delta < 0.0)

{
10) right = arrayMiddle -1;
11) delta = delta "^-1.0;

}
else

{
12) left = arrayMiddle + 1;

}
13) if (delta <= epsilon)

{
14) return arrayMiddle;

}
}

15) return -1;
}

Software Verification and Validation 149

Fig. 3.21. Example Control Flow Graph (CFG) for the binary search algorithm.
The numbers within the nodes represent the statement from the source code list­
ing.

Control flow graphs can be very elaborate or very general. Tool support
is very mature in this area and I advocate the use of a tool to support your
testing activities.

If the V&V team wanted to focus their coverage on the source code
statements and they wanted to test the component and achieve 100%
statement coverage then that would require every statement in the program
to be executed by the tests. Keep in mind that achieving full coverage of
the statements does not ensure you have a correct program, it only means
that every statement in the code will be executed. But having said that,
anything less than this means that there is code that may be deployed that

150 Chapters

has not been exercised prior to operations. Using tlie graph in Figure 3.21
we have 5 paths through the graph.

Pathl
Path 2
Paths
Path 4
Paths

1-2-3-4-5-6-15
1-2-3-4-5-6-7-8-9-10-11-13-14
1-2-3-4-5-6-7-8-9-10-11-13-6
1-2-3-4-5-6-7-8-9-12-13-14
1-2-3-4-5-6-7-8-9-12-13-6

Value of findMe
2.0
2.0
2.9
9.0
8.0

Value of size
0
7
7
7
7

In order to provide full coverage of these paths then we would need to
develop test data that ensures every path is taken. So for example, the 5
test cases in Table 3.17 could be used to exercise the 5 paths identified
above.

Table 3.17. Example test data to exercise the paths through the code identified
above.

Path Value of inArray
One {1.0, 2.0, 3.0, 4.0, 5.15, 6.14, 9.0}
Two {1.0, 2.0, 3.0, 4.0, 5.15, 6.14, 9.0}
Three {1.0, 2.0, 3.0,4.0, 5.15, 6.14, 9.0}
Four {1.0, 2.0, 3.0, 4.0, 5.15, 6.14, 9.0}

_ J w e _ ^ ^

However, you'll quickly see that you really don't need 5 individual test
cases to exercise each path. One test case could be used to exercise all the
paths. You'll also quickly realize that even though the test data chosen
does exercise each of those paths, these particular examples don't provide
a good coverage on the bounds of the array. However, you have achieved
full statement coverage. This is a good example where a combination of
black box and white box testing is beneficial. We can ensure that all
statements are covered but we would incorporate boundary analysis to help
identify the particular data to exercise the code (i.e. make the value you are
searching for the first and last elements in the array, make sure epsilon is
set to the right precision to guarantee accurate results).

Sometimes the V&V team may want to provide coverage, or combina­
tions of, on the data being used in the code. These instances will arise
when portions of the flow control is determined by the data rather than the
code. The V&V team takes into consideration the definitions and uses of
variables along the execution paths to help identify tests. A variable gets
defined if it gets assigned a new value because of the execution of that
statement. After that, the new value will be used in subsequent statements.
Starting with the variable, graph (trace) through the code where it is used

Software Verification and Validation 151

(referenced and defined). Using these graphs we can construct test to pro­
vide coverage for all the paths.

Even though I brushed over some of these approaches you have to un­
derstand that there are plenty of tools to support these approaches. Also,
there are numerous approaches that can be incorporated based on the type
of system you are assessing. For example, object oriented systems may
drive the V&V team to test messages being passed between objects. How­
ever, some aspect of coverage always seems to be the underlying attribute.
For the rest of this section I want to simply give a little more detail regard­
ing the four test types and the documentation that needs to accompany the
V&V test strategies.

Component testing is conducted to verify the implementation of the de­
sign for one software element (e.g. unit, module). Its purpose is to provide
assurance that the program logic is complete, correct and works as de­
signed. Component tests assess attributes of the software like timing con­
straints, memory constraints, performance at boundaries, interfaces, as
well as under stress and error conditions. Component testing can be per­
formed using a combination of black and white-box testing techniques but
more white-box testing is employed during component testing.

Integration testing is a series of tests in which software components are
combined and tested until the entire system has been integrated. The pur­
pose is to provide assurance that the design objectives are met. The focus
of integration testing is on the following:

• Compliance with the larger set of fiinctional requirements at each stage
of integration

• Correctness of subsystems and subsystem interfaces
• Assessment of timing and memory requirements as components are

integrated
• Performance at boundaries and under stress conditions

Integration testing validates the structure of the design and how well the
software components perform when they are integrated into the system
structure. System testing then focuses on the integrated hardware and
software system, usually under artificial conditions, to verify that the sys­
tem meets its specified requirements.

The purpose of system testing is to provide assurance that the software,
as a complete entity, complies with the system requirements. It focuses on
the following:

• Compliance with all functional requirements as a complete software end
item in the system environment

• Performance at hardware, software, user, and operator interfaces

152 Chapters

• Performance at boundaries (e.g. data, interfaces)
• Performance under stress conditions

The primary goal is to validate that there are no defects among and
omissions from the software and system requirements specification. Spe­
cific areas that may need to be tested are performance, security, reliability,
and availability of the system.

Acceptance testing is often confused with system testing. It brings one
additional focus to the testing regime. It can be considered as formal test­
ing that is conducted to determine whether or not the system satisfies its
acceptance criteria. It also enables the customer to determine whether or
not to accept the system. The purpose is to provide assurance that cus­
tomer's requirements and objectives are met and that all components are
correctly included in a customer package. Acceptance testing focuses on
the following:

• Compliance with acceptance requirements in an operational
environment

• Compliance with installation procedures
• Compliance with user procedures

The Primary Goal is user validation and that the software complies with
expectations, as reflected by the operational requirements. Users or repre­
sentatives of the users need to be involved in establishing appropriate ac­
ceptance test plans. It is extremely beneficial to include them early on in
the planning process so that the V&V team can understand what they feel
the acceptance criteria are and plan as well as manage their expectations.

The documentation necessary to accompany the test types are test plans,
test designs, test cases, test procedures, and test logs. Figure 3.22 shows a
document hierarchy for the various test artifacts.

Software Verification and Validation 153

H
Test

Summary
Report

Fig. 3.22. Hierarchy of test documents that make up V&V testing.

These artifacts are further explained in the subsequent paragraphs. Test
plans are developed for each level of testing. If you have separate plans
for each level then develop an overarching V&V test plan that describes
each level and how they are integrated together in order to represent the
overall V&V test program. The areas to focus on when planning include:

• Transitioning from one phase or level to another
• Estimating the number of test cases and their duration
• Defining the test completion criteria
• Identifying areas of risk
• Allocating resources

For planning the V&V test strategy you need to identify the scope, ap­
proach, resources, and schedule of the testing activity. You also need to
indicate what is to be tested, what is not to be tested, testing tasks to per­
form, people responsible, and the risks associated with testing. All of this
will then be refined by the test designs. The purpose of the test design is to
refine the approach laid out in the test plan. It needs to identify specific
features to be tested by the design and it is used to associate the applicable
test cases and test procedures that will be used to meet the design.

Test cases specify the actual input values and expected results. The goal
in the generation of test cases is to exercise the logic and set up tesfing
scenarios that will expose errors, omissions, and unexpected results. Keep
in mind that one test case may be referenced by several test designs.

154 Chapters

Lastly the test procedures specify all the steps required to operate the sys­
tem and exercise the specified test cases in order to implement the associ­
ated test design. A combination of these artifacts is what is used to repre­
sent the V&V test strategy.

It would be an excellent discussion regarding whether or not all of these
artifacts are actually needed. The reason for that statement is simply this.
Testing can be a dynamic approach used by V&V to assess the system. If
you were to compare testing with other analyses (e.g. traceability analysis
- complete trace of requirements) you would wonder why they don't re­
quire an onslaught of documentation. The one main difference is that the
V&V testing may be part of the development program and not just used as
an approach to performing a V&V task. If it is part of the development
project then it needs to be performed just as rigorously as the other engi­
neering activities performed on the project. When used as an approach to
perform a V&V task then I would understand if the V&V team chose not
to produce formal documentation and relied on their engineering note­
books to document their approach and findings.

References

Fagan, M.E. (1976) Design and Code Inspections to Reduce Errors in Program
Development, IBM Systems Joumal., Vol. 15, No. 3

Heitmeyer, Constance, James Kirby Jr., Bruce Labaw, My la Archer, Ramesh Bha-
radwaj (1998) Using Abstraction and Model Checking to Detect Safety Viola­
tions in Requirements Specifications, IEEE Transactions on Software Engi­
neering, Volume 24, No. 11

Heitmeyer, Constance, Dino Mandrioli (1996) Formal Methods for Real-Time
Computing, John Wiley & Sons Ltd., New York

Chapter 4: Systems V&V

Without a systems approach to performing verification and validation
(V&V) all you can do is draw general conclusions about particular stages
of a system's life. Not only are you constrained to individual phases of the
life-cycle you can only verify that the software is an adequate representa­
tion of the documented behavior. There is another dimension that needs to
be considered and that is validation. Is the right behavior evident in the
system? This focal point looks beyond the software as well as the docu­
mented behavior and is often absent during development. The source code
may be built adequately but if it doesn't operate as the user needs it to then
what's the point in building the system? I am suggesting two things. First
I believe that there is a correlation between each set of results that V&V
produces during the different phases of the life-cycle. Second, to deter­
mine whether the software will meet the needs of the user and its intended
application then V&V needs to take into consideration everything that can
affect the software.

The intent of this chapter is to address where I believe V&V needs to be
in the next decade. Specifically, we need to take a systems approach to
performing V&V. Manually reviewing artifacts is an age old approach
that we need to get away from. Domain experts are essential but we need
to equip them with better tools and methods that will enable them to ex­
plore and reason about more complex and domain specific interactions the
software has within itself and its surrounding environment. Manual tech­
niques are limited to exploring that which is documented. The limits of
human cognition make it difficult and possibly impossible to understand
all the behaviors of the software.

There are two areas that I feel could be improved upon when performing
V&V. The first area is related to the management practices and the second
is related to the technical aspects of performing V&V. Management of
V&V may even be considered ad hoc in some circumstances. Thankfully I
have only been witness to one V&V project that didn't have management
identified as a role on the team. The project felt that they just needed some
assessments performed on specific artifacts (e.g. design module X). "We
don't need a project manager, we need an analyst." That may have been

156 Chapter 4

the case and that may be acceptable but then again I wouldn't consider that
to be V&V either.

The concept for including stakeholders is not new in the systems engi­
neering world but it is fairly new to the V&V world. The health industry
has taken advantage of this concept and I would like to see more V&V ef­
forts follow suit. Including the stakeholders, at least during the planning
phase, is essential. One of the things we have learned from systems engi­
neering is that we need to manage the expectations of our stakeholders.
V&V is no different and to do that we need to first understand what their
expectations are. It is extremely difficult to be successful if you don't
know what your stakeholders are expecting. You may get lucky but for
the sake of this book let's just say luck won't be considered a viable man­
agement approach. Understanding and managing their expectations is
much like requirements engineering. You need to elicit their needs and in­
corporate them into your solution. These needs can be a driver for the
V&V objectives and V&V requirements, depending on your organizational
model. Even if you are an independent V&V team, you must at least un­
derstand what your stakeholder's expectations are. The reason is that it
provides you the insight into the system regarding what their concerns are
and that will better enable you to identify what aspects of the system are
error-prone.

Other systems engineering concepts that would greatly benefit V&V are
the establishment of objectives and requirements. Objectives are the bed­
rock from which you focus your analyses. They also serve as an excellent
communications tool. They state exactly what you are going to verify and
validate with respect to the system software. They focus the V&V tasks
by identifying which parts of the system are of concern. The entire soft­
ware system does not need to be verified and validated. The V&V team is
going to concentrate their efforts on those areas of the system that require
additional assurance. As such, the objectives serve nicely in identifying
the parts of the system V&V should focus on. A combination of the objec­
tives and the V&V requirements identify what it is your team plans to
achieve when you are done. Your team members as well as the stake­
holders will know early on what to expect from V&V.

The idea of having a standard set of V&V requirements was pretty basic
and straight forward. I felt that a common language was needed to bridge
the gap between development and V&V. Engineers are well accustomed
to defining requirements and developing solutions that meet the require­
ments. I don't believe that V&V should be any different. V&V should es­
tablish requirements that they are held to and design a solution that fulfills
those requirements. To begin with I asserted there were fifteen standard
requirements that V&V must fulfill every time (see Figure 4.1). These re-

Software Verification and Validation 157

quirements are applicable to every V&V effort. My reasoning was based
on the fact that in order to determine whether or not the software system
was built adequately required the entire system to be assessed. This in­
cluded the requirements, design, source code, and the tests. Only then
could V&V judge the quality of the system. Just by looking at the re­
quirements and the tests does not give ample insight into the design or the
source code. The standard V&V requirements serve to establish a com­
mon framework from which we can institute a repeatable engineering ac­
tivity of V&V.

1 Requirement
No.

3.0
3.1

3.1.1

3.1.2
3.1.3
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.6
3.3
'3.3.1
3.3.2
3.3.3
[3.3.4

3.3.5

3.3.6

3.3.7

V&V Requirements

Functional Requirements
Traceability Analysis
V&V shall assure all the appropriate parent elements and child elements are in a
relationship.
V&V shall assure that the parent elements are related to the right child elements.
V&V sl-jall assure that rdationships are consistent ai their level of detail.
Interface Analysis
V&V shall assure tfiat the right Interface elements have been Identified.
V&V shall assure all the interface elements am completely defined.
V&V shall assure that each Interface element is used consistently, 1
V&V shall assure interface elements maintain the performance needs of the system.
V&V shall assure that interface elements are testable.
Technical An^ysls
V&V shall assure ihe mhi ch8d elements have been identified.
V&V ^adl assure the child element satisfies the parent element
V&V shall assure the child elements are completely defined.
V&V shall assure that each child element is used consistently.
V&V shall assure the child element compiles wit) appropriate standards and engineering
practices.

V&V sJiall assure the logic and computational precision satisfy the needs of the system.
V&V shall assure all chSd elements are testable. |

Fig. 4.1. Standard set of V&V requirements that must be fulfilled on every V&V
effort. They are categorized as Traceability Analysis requirements, Interface
Analysis requirements, and Technical Analysis requirements.

Figure 4.1 establishes the standard set of V&V requirements. They are
requirements for traceability analysis, interface analysis, and technical
analysis. This standard set of requirements are then refined based on the
phase of the life-cycle. Figure 4.2 is an example of this refinement. As
you can see in the figure, during the requirements phase the V&V team
must fulfill traceability analysis requirements, interface analysis require­
ments, and requirements analysis requirements. The standard set or sys­
tem-level V&V requirements, are simply qualified based on the phase in
which you are in.

158 Chapter 4

V&V System R^fjuif »m«ftts V&V P h a s * RjH)ui<«- t̂»onK

Fig. 4.2. Example refinement of the system-level V&V requirements for the re­
quirements phase of the life-cycle. Each phase of the life-cycle will qualify the
system-level requirements based on the artifacts that are applicable. So for exam­
ple, during the implementation phase the V&V team will have the same set of re­
quirements but they will be focusing on source code elements and design ele­
ments.

A V&V project must begin with these requirements and develop solu­
tions that fulfill them. This serves as the common framework for which all
V&V efforts shall operate. Tools, methods, and techniques are selected
based on these requirements and is straight forward now that the criterion
are established.

The remaining management approaches that I felt were new concepts
and would yield great return dealt with controlling the project once it was
being implemented. The first was instituting effectiveness measures. Ef­
fectiveness measures are used in the development community as indicators
to the quality of the inspections being performed. They were successful
then and I believe they can be successful now. The approach gives man­
agement insight into the adequacy of the issues discovered during analysis.
This is achieved by categorizing the issues discovered by the V&V team.
Again, these are indicators, not triggers. Just because certain things were
found and others weren't does not mean that immediate action needs to be

Software Verification and Validation 159

taken. It simply means that you need to understand why. Control gates
were the other new idea that may be hard to digest at first. The thought
was that control gates could be used to mitigate a lot of the risks associated
with V&V. You would now have a review team looking at the potential
problems the V&V team is going to be faced with instead of just one man­
ager. Also, it institutes a level of rigor that I believe V&V needs to ac­
quire. They need to be treated just like an engineering project which has to
show that they are logically, not necessarily physically, ready to proceed to
the next phase.

Technically I believe that a shift in the V&V paradigm is in order to not
only provide validation of the software but to improve the approaches
taken to verify the software. A shift from manual analysis to dynamic
analysis would provide enormous benefit to the developing organization
responsible for engineering the software. If V&V practiced manual analy­
sis to fulfill their requirements then that would translate to bringing in do­
main experts to review the software artifacts. The development project has
just as good people as the V&V team and they review the artifacts. So
what makes the V&V personel a better choice to reviewing documents
than the developers?

A shift in the paradigm would incorporate technical approaches that the
developers aren't using (e.g. modeling the requirements). These ap­
proaches would clearly show that V&V is truly a complimentary activity
and not repetitive. Modeling and simulation is something that the devel­
opment team does not have the time or resources to do. You may argue
that during testing they will incorporate these approaches but that is much
too late in the software life-cycle. Using such a capability early on in the
life-cycle will provide more stable requirements and lessen the risk of find­
ing problems with requirements later on, which we know is quite costly.

Formal modeling and simulation bring a whole new perspective to ana­
lyzing artifacts. Instead of just reviewing artifacts and trying to compre­
hend all the possible behavioral patterns that the static documents portray,
the analysts can model the information and execute it to extract the actual
behavior. Instead of writing issues on a document, analysts will write is­
sues about the behavior of the system. This alone is what is needed to
make final conclusions regarding the system. Just because there are issues
with documents does not mean that there are issues with the deployed sys­
tem. A behavioral perspective would yield results that can be used to
make more informed decisions regarding the deployment of a system. A
generic representation for this approach is depicted in Figure 4.3.

160 Chapter 4

Fig. 4.3. A generic model for performing dynamic analysis during the software
engineering life-cycle. During the requirements phase, the V&V team would take
the software artifact, software requirements, and model it to prove certain proper­
ties or the omission of certain properties that V&V feel should exist. This model
would then serve as a framework for other assessments to be performed (e.g. test
case generation). The circles with numbers represent the V&V requirements in
which the task fulfills.

The last significant discussion point tries to improve our current prac­
tices based on past results. Present and future V&V efforts MUST incor­
porate lessons learned from the past. We must learn from our past mis­
takes and incorporate them in our practices so that we don't repeat the
mistakes of the past. This sounds simple enough, just build repositories of
past software issues, best practices, and known accidents. It isn't that sim­
ple. Even though we have been diligent in documenting our known issues
we haven't been good at integrating that knowledge into our engineering
practices. I see this as something V&V could take the lead in for the soft­
ware engineering community. Not only would V&V bring technical ap­
proaches not being used by the development community they would bring
a well established knowledge base for best practices that support their con­
clusions.

I had mentioned in the beginning that a possible correlation existed be­
tween the V&V results from each of the life-cycle phases. These relation­
ships could be the genesis for a series of assertions that could serve as best
practices (i.e. using vague terms in the requirements creates ambiguity that
is not testable). If we develop other assertions from our results then maybe
there is an underlying theory that could explain them. We could use our

Software Verification and Validation 161

fundamental theory, or theories, to explain why our assertions are true (or
occasionally false). A much bigger leap is that our underlying theories
could even generate many more assertions.

If I am a V&V analyst assessing the source code I will generate three
sets of information. The first set of information encapsulates the under­
standing that I have gained from assessing the software. The second set of
information may consist of issues that I write regarding the concerns that I
have with the source code. The last set of information that I generate
comes from fulfilling the V&V requirements for code analysis. Specifi­
cally I will know whether or not:

• The right source code elements have been defined.
• The source code elements satisfy the design.
• The source code elements are completely defined.
• The source code elements are consistently used.
• The source code elements comply with applicable standards and

engineering best practices.
• The source code elements maintain the performance needs of the

system.
• The source code elements are testable.

Now that I have these three sets of information how are they related to
each other and with other sets of information learned from additional ana­
lyses (e.g. traceability analysis)? For example, if I know that the right
source code elements have been defined but I have issues that show they
can't be traced to any design element then what does that ultimately tell
me? Could it be that the project will experience significant risk while
maintaining the system? Are there other propositions that could be derived
from the combination of this knowledge? There may be an underlying
theory that when developed could explain such relationships. Maybe such
a theory doesn't exist and our results for each phase are simply that, results
for that phase.

I am not searching for a binary answer of yes or no regarding deploy­
ment. What I am seeking is an approach that integrates our results from
each individual phase of the life-cycle. An approach that would yield
propositions that can be easily translated into the development framework.
I am searching for a unified theory for V&V. I envision a theory that inte­
grates the general conclusions resulting from each of the life-cycle phases
into a unified conclusion regarding the system as a whole. Maybe such a
theory does not exist but I believe it demands exploration.

As a paradigm, V&V has been quite successfiil over the years. How­
ever, as our systems become more complex we can not rely on how we use

162 Chapter 4

to provide assurance. Our assessments have to employ technologies that
will enable us to explore more in less time. It won't require a revolution
but it will require change. Unfortunately change is difficult. It takes our
engineers out of their comfort zone and puts them in a realm to which they
are not normally found. As a leader you have to be willing to first accept
these opportunities and second you have to be willing to lead from in front.
That means you have to try these concepts out if you haven't already. For
some of the readers these concepts are going to be regarded as "no brain-
ers", simply because they are already practicing what I have discussed.
For others they will be new concepts to which you should at least explore.

Whether you are an engineer, scientist, or manager you have to accept
the responsibility to do everything that you possibly can to assure that you
have a system worthy enough to deploy. I wish you well in your endeav­
ors.

Appendix A

Throughout the book I have used project MUGSEY 0x01 as an exam­
ple. This appendix provides all of the information that I have used regard­
ing the project. The Multiple Gravitational Scientific Experiment Yield
(MUGSEY) has the following program goals.

• To find the gravitational differences that the Earth influences on
vehicles attempting to reach Low Earth Orbit (LEO)

• To provide cost effective launch and observatory platforms that can
accommodate multiple scientific experiments that focus on studying the
Earth's atmosphere, Earth's gravitational pull, and LEO.

The MUGSEY Program strives to provide a solution to meet these goals
using common off the shelf technology. Examples may be model rockets
and hot air balloons. To date, information suggests that neither of these
technologies can put an observatory platform into LEO. Program
MUGSEY shall achieve these goals using such technology. Indirect bene­
fits of Program MUGSEY are:

• Independent parties can build scientific experiments that can piggy-back
on MUGSEY,

• Missions within Program MUGSEY can be used in the classroom to
teach software engineering and Verification and Validation (V&V)
practices.

The first mission, MUGSEY 0x01, is the flagship mission that will
prove the concept of launching and recovering a basic scientific platform.
Even though the first mission is not planned to reach LEO, it focuses on
first proving that off the shelf technology can provide the means to the
end. The mission requirements for MUGSEY 0x01 are:

MLO MUGSEY0x01 shall obtain an altitude of 50,000feet.

Rationale: The first mission needs to show that it can achieve a suitable
altitude while performing scientific experiments. Eventually higher alti-

164 Appendix A

tudes will be achieved, but this first mission is to show that we can operate
and recover a scientific platform in high altitude environments.

M2.0 MUGSEY 0x01 shall obtain pictures every 1,000 feet during as­
cent and descent.

Rationale: The first mission must show that it can operate a camera and
take pictures during mission operations. Every 1,000 feet seems to be an
adequate display of performance for the camera. Also, if a balloon is used
then it will normally have an ascent rate of 1,000 feet per minute. So tak­
ing a picture every minute seems to be adequate to prove performance.

MS. 0 MUGSEY 0x01 shall obtain temperature readings every 1,000 feet
during ascent and descent.

Rationale: The first mission must show that it can operate temperature
sensors during mission operations. Every 1,000 feet seems to be an ade­
quate display of performance for the temperature sensors. Also, if a bal­
loon is used then it will normally have an ascent rate of 1,000 feet per
minute. So taking temperature readings every minute seems to be ade­
quate to prove performance.

M4.0 MUGSEY 0x01 shall obtain altitude readings every 1,000 feet dur­
ing ascent and descent.

Rationale: The first mission must show that it can operate an altimeter
during mission operations. Every 1,000 feet seems to be an adequate dis­
play of performance for the altimeter. Also, if a balloon is used then it will
normally have an ascent rate of 1,000 feet per minute. So taking altitude
readings every minute seems to be adequate to prove performance.

M5.0 MUGSEY 0x01 shall obtain and telemeter position of the vehicle
every 1,000 feet during ascent and descent.

Rationale: The first mission must show that it can operate a Global Posi­
tioning System (GPS) during mission operations. Every 1,000 feet seems
to be an adequate display of performance for the GPS. Also, if a balloon is
used then it will normally have an ascent rate of 1,000 feet per minute. So
taking position readings every minute seems to be adequate to prove per­
formance.

Software Verification and Validation 165

M6.0 MUGSEY 0x01 shall be recovered, in tact, so that all data can be
down-linked and the vehicle configured to fly again within one week.

Rationale: The first mission must show that it can descend at an ade­
quate rate so that it doesn't damage the package and all information can be
retrieved from the computer. Also, damage must be minimal so that it can
be reconfigured to fly again within a week.

The mission requirements, defined above, are further decomposed into
system requirements. The system requirements are then decomposed into
specific segments requirements. The segment requirements are then de­
composed into specific element requirements. The element requirements
are further decomposed into specific subsystem requirements. The follow­
ing figure represents the concept for MUGSEY 0x01.

MUGSEY 0x01 System Concept

SeparationV-—>—^
Psrschi^e'—j—K

Obssfvatory

S -4-Aftter.n3«

^>Launch Segment

-Recovery Segment

-Obsefvatory Segment

UnsL /
Ground Segment

Ground Opgrations

Fig. A.I. System concept for project MUGSEY 0x01.

Figure A.2 is the operational profile for the MUGSEY 0x01.

166 Appendix A

MUGSEYOxOI System Concept

J> 30.000

^ 20,000

2
*c>

Q

0
I

0
"CD'Everv Mintite:

• Take Picture

Every 10 Seconds.

• Take lernperalurer

• Tei^trieier P'ositiori

Ev^ry 5 Seconds

• Take Position

20 30

Time (min)

On-board

• if computer tasks hang

* Restart Tasî 's

• If aifctude >~ 50.000 feet

* Separate

Gfound - Monitor Posiliofi

* If it enters Hazardous Zone

•If altitude >-50.000 feet

• Separate

• If t&iem^try stops 3 consecutive times

• Restart on-bc-ard computer

Fig. A.2. Operational profile for project MUGSEY 0x01.

Figure A.3 are the system requirements for project MUGSEY 0x01.

Software Verification and Validation 167

. \ i « » b «

5 5

%\
. U]

i l i

i\'i

i j i

i i

%>\

}2 5

5 i t

5 J

3>l

5 J :

3 5 . *

s i 4

5)J

? * f t

^ 4

5 i l

5 * :

S i .4

) i 3 S

5 i , * :

5 - 1 5

- 0

i }

4 M

i ! . '

U 3

- U

J 8

5 5

,,
«<>
t i i

« , i . }

« 5 i

(.*
Hi

« j ; 2

f i*
< ; t

€ i

&5J

«.*;
6.t

M t GSi\ f>ii)5 S \ < i « «) R#*TS«f«Mw«s

N a « »

I ^ ^ « ,

>OF^>J Ff •^1»"^.-

isiat>:tjrR«<ck.j«ft

I ' U i i n i StXMtj;

lKU|«n; F)*!i « Vur^

r«^;.t«*

JZ^"

? * « , ^ .

?<»«'v> D « *

f > S « f i >

?!v««a5&»uA!'Mw!*

?«»it.-ci. 0 « a

Cx»t»i,ii-<M!ia»](

C ^ a - * . j

S t t « i C«tn>»ii»&aj

'ifn-i^tiHi Cmsaaxiit

R « » v » (y

SiC'f « > J^rmtuAj

K*s«v<r; ^ w u - s c

RlK»\«> f«p»fM»5-

£*«<>','«!V illpKH Jtf

S « < S 1 « 7 ^ ' « « < ' 5 «

o,«,,^,

JUiMi' •• T*>«««sv

C*«JM*".««jf

A**«.<

* J « . ^

^ I ' t n t K.k,t

F A . C « ^ J « . - ,

W«ji>! Cc<"+}j»s«

.^,..
JUiiw R«<5««>K'o

AiMTt Mm4«a

0.ut.«

i>H TIH«<-<«I

\ r v Y , ' ? v CaC' *)«!: 4>rn», *-«i « ' . ' » , - ^ s t * « & « c t

i>i:t<iii M. ;i^.'.ij 4K.-«ftS u j i ^4V;:M> iiti:i)MI <Mtitni H

?,4t SI«. JKIU U i f U ! «<>&.;>»•. i-S « 4 J X ' l i t '

^jstw** Jhal! ** t!'»*-«»m»*4 r<!h «!v» t»?jU vcixMi

T t s n p f i ' w * r4Mii«i] j^au Ix t j k M » i Sr*5-,-tB:j « f

V« «KH«.C !<•»'«• i«^SJ^};'.»i»-»

*it<>iai» rt*jT^ Ai i t ** iit-«a)n f»«t KV! itwk 4

^!C04EV ; « c ; IH»~ V« i(ii* j« »»*<«* j«<Sjp-cs*»

M'v'v^EY ^lif 1 *<•.«• j f c : * » « c<Mi»\»<5<! **5i-«a*

t.CJl'MaiK'a vhlu i.S» «'.l!!U. ." MUUiu 9j •SCatiiiiHa

T.p<- >»f^M»««, 5j; .&5£^ C-xSS A4asisT'.«v»

^JC65E\ U e : sU»>, axs^^ly • .«h j(2 l iw <*<!^«ft5««»

!<•' x^ X M54 ?f i ; « ; f w f»r <^":st«

jvSX^̂ Fy -^: »>•*& !*}*!•«!» "(jiiri* 9/',c c « /•**

irofiiE^- ii!<r»»«: H»'-» *« »*.««i -»••» f'-iv ««>*«

^!vf>;f'^" i » 5 ' »ia»;' ^•wtj^vrvh »3) F A * t«jsua.'5fl«

ifL'fiSaY U C : i lj iS «S«!M »ji4»f Uwi«as i«*»j

&e.~! twi ' t ?^»r jettf-imtit* Our. J « U « » M

Al!»C4«i>o

..
O i i i

0 $: : ^

0 3 i i :

3 J 2 4 . 4

3 5 ^ : : .

m,^^

0 $: s •;

c j j i i

O i i :

: s 5

c»:?2,«

0 5 i ! .«

O S ; ; 5

O S : i ; 0 $

1X24ii

c-si-s*;

o j : i < :

0 4 J 4 < 5 :

O S 2 J * ;

» 5 ? f

S S 3 J

Si',-i

n ? ?

c.^

w ^

w . .

«<A

I S 1 0

i.S 1 1

IS ! -« j

%'A

L S : 2

i s :*

u : r
C S J i * OS

C S J 4 : - 5 j

J t S i i - t l (XS

Fig. A.3. System requirements for project MUGSEY 0x01

168 Appendix A

Figures A.4 - A.7 are the requirements for the observatory segment for
project MUGSEY 0x01.

Obs^ivdtory Segtnent
RequlfemewtiDi Oescripttlon

OS 2 0
Observatory Segment consists of the GuttJance Efemenl Imagtng Elemeol, Temperature Element. m6
Command and Data Handling (C&DH) Element.

The Guidance Eismenl obtains and stores aHitude and posdbn readmgs using a Giobai Positioning
System (GPS) and the Memofy- Managsr of the C&QH Element

The QM\4&ncQ Element receives altitude and position data orKe every S seconds from GPS
Tb^ Guidance Elgment shali interface vyrth the GPS as d<?fined in the GPS Interface Control Documenl

Th€̂ Guidance Element shall p3Cket(2:e the altituds m6 position data along with the local time and send
this packet to the Memor,? Manager and to the Telemetry Manager of the C&DH Element

O S 2 1 4 Altitude and p«;$ition readings shall ba made and kept to a precision of 2 dgcimal placas.
jMtltude readmgs^^sha^

OS 2.1 6
The Guidance Elemenl shall update the Watchdog Timer matrix ever/ 5 seconds vsfhen tt successfully
recef*es data from GPS.

OS 2.1 7
The Guidance Elament shall invalidate the Watchdog Timer matrix if ater 3 consecutrve lailures to r^td
ffom GPS It must make these consecutive readings within 15 seconds

Position readings shall b« taken <n degrees wjth longitude and latitude in thjs format (TBOj and kept to a
precision of 2 deciniiat places

Fig. A.4. Observatory Segment requirements for project MUGSEY 0x01.

0bsefvj»t6ry S^gm^nt
RequiremetU JD Description

OS 2 2
The Imaging Element obtains and stores pictures during ascent an6 descent using a camera m<i the
f^lemory Manager of the C&DH Eleiir>ent

The tmaging Element shall utilize a web camera that takes pictures no more than 45 degrees of nadir and
has the foilovgiiTig physical charactenstics (TBD)

O S 2 2 2
jThe imaging Element shall receive and maintain pictures from the 'web camera at a resolution ol 640 x
480

The fmagiiig Element shall receive m^i maintain pictures from the weh camera at least once per mmute

OS 2 2 4
TJ-ie imaging Element shall packetize ail images and stamp *vith local onboard time altitude. BM position
Idata

0 8 2 2 4 1 The tmagm^ Element shall use a lossless cioit^j^ression algorithm to packetize the data
The Imaging Element shall interface with the camera as defined by the camera Interface Control
I Document

OS 2 2 6
Vi\B toagiiig Element shall u'^^^ the Watchdog Timer matnx every S seconds *hen it successfully
keceives data
iThe Imaging Element shall invalidate the Watchdog Turner math??. If after 3 consecutive failures to read from
khe vs^b camera it must make these consecutrve readings v^thin 1$ seconds

Fig. A.5. Observatory Segment requirements for project MUGSEY 0x01

^^^Ofe$gry«to^ry^^Segment̂ ^^
R»<|iujrfen>«nit V& D^sciiption
O S 2 3 The Temperature Element obtams and stores temperature re^ ings dunng ascent and descent

OS 2.3 1
jline Temperature Element shall receK'e m6 maintain temperature readlr^gs from the temperature sensors
a^ least once evety 10 seconds

OS 2.3 2
Temperature readings shall be m^iti m units of Fahrenhert and maintained vvilh a precision of 2 decimal
[places.

OS 2,3 3 Temperature readings shall be packeted wrth the local onboard time, position, and altitude

Temperature Element shall comply with the temperature interface Control Document.
Temperature sensors shall be located tnslde the obseivatory and outside the observatory
|T>»e Temperature Element shall update the Watchdog Timer matrix every 10 seconds when it successfully
keceiv-es data

|lTie Temperature Element shall invalidale the Watchdog Timer matrix if after 2 consecutive failures to read
from either of the two the temperature sensors

Fig. A.6. Observatory Segment requirements for project MUGSEY 0x01.

Software Verification and Validation 169

Observatory Segment

OS 2.4
OS 2.4,1

0S2,4 .11

OS 2.4 2
OS 2.4.2 1
0524 .2 :2
OS 2.4 2 3
OS 2.4.2.4
OS 2.4 J

OS 2,4.3.1

OS 2.4.3.2

OS 2.4.3.3
OS 2.4 4
OS 2.4.4.1

052,4,4-2

OS 2.4.4.3
OS 2 4.6

0S24.S.1

OS 24.5.2

OS 2 4.6

OS 24,5.1

OS 24.€.2
0S24.S.3
OS 2.4.7
0S24 .7 .1
0 S 2 i

Cotrimanii and Data Handlimi Element
Operatinq System
The operating system shait |:>rovJde the baste kemsi. toadtng of softward images, pawning of tasks,
scheduling of tasks, and interfactng wth other ^ibsystems.
Memory Manaqer
Memory manager shall scrub memory af)d correct ar>45|!e bit upsets artd detect muttiple bit upsets.
Memory manaqer shall scrub memory once every .5 seconds.
Memory manager shall prov»de an interface to downlink the data after recovery.
Memory manager shall provrde storage of all data sent to it
TeiemetryManaqer

Teiemetfy Manager shall send the position of the Observator/ Element, to the ground, once every 10 seconds.

Tslemetry Manager shall provide an interface such thato^er subsystems can request altitude and position
data.
Telemetry Manager s^all maintain the lastvalid packet of data from the Outdance subsystem
Watchdoa Timer
The Watdidog Timer shall maintain a matrix of all tasks executing on the processor.

The watchdog timer shall kill a software task and perform a warm restart if it detects that a task has not
updated Ihe ma^ix.

The watchdog timer shall check the matrix everv 15 seconds.
Fault, Detection, Isolation, and Recovery ^FOIR)
If tiie obseivatoiy detects a descent rate of 5,000 feet per minute it ^ a l l dispatch a RECOVERY cornmar^d
sequence.

If tiie observatory detects that it has achieved ari altitude of 50,000 feet it shall issue a separate command to
the Recovery Segment.
Command Processing

Command Processing ^ a l l validate all commands that are to be pnscessed. If a command is not validated
then It is discarded.

Command Proc8ssin<^ #satl receive. depac(®t and process real-time commands sent from the ground.
Command Processing ^ a l i maintain a table of stored commands that can be issued via a mnemonic.
Trf»e Mana<j»f
Time Manager shall maintain local on-board time and provide an interface for requestJiq subsystems.
The Observatory Segment ^»all be able to sustain an impact of (TBO| Ibs/sajr inch.

Fig. A.7. Observatory Segment requirements for project MUGSEY 0x01.

Figure A.8 is the breakdown of the design for project MUGSEY 0x01.

\

• •

'v«l—. --, ^

f

tut tin ch
S«Sf«T«*f>t

, \ ̂

^̂ J

T

ConwrwinKJ

Subvt4m

• 1

Sv*i«m

1

Ohservjtoiv
S«0rr«ftt4

L J

'
InruiQiflQ
Bemeni

I*,. J

^ •

Op«r j ^9
%fl! fm

^ ' ^ — , • ' „ „ „ , „ , y V .

•t

J

<

"

[

' •

M<wnori
Sijb:»yfU

1
.
J

1
ENtment

^ 1

S«<gim«fit
L̂._ -..J

T»r>^rjii[i#«

V J

f

T«*tm«hy

' > ^ '

S^l»y*item

Fig. A.8. Breakdown of the system for project MUGSEY 0x01.

Index

Equivalence partitioning, 147

Acceptance testing, 152
architecture description languages,

135
assurance, 3

B

Black box testing, 146
Boundary value analysis, 147

checklist, 116,127
Code analysis, 135
component testing, 145
Component testing, 151
control flow graph, 147
control gates, 66
Control gates, 159
control specifications, 133

D

data dictionary, 133
design analysis, 133

earned value, 56
effectiveness measures, 57,158
embedded, 79
Entity-Relationship, 133

Formal methods, 132

I

ICD, 106
input analysis, 134
Integration testing, 151
Interface Analysis, 106
internal, 80
IV&V,81

leadership, 7
lessons learned, 160
life-cycle, 85
logic analyzer, 117

M

Manual analysis, 126
MATLAB, 131

N

natural language processing, 105
network diagram, 47

O

Orthogonal Defect Classification, 57

172 Index

Planning, 20
process specifications, 133
Promela, 137

R

regression testing, 146
Requirements analysis, 124
Risk management, 68

SCR, 110
sequence diagrams, 108
Sequence diagrams, 118
software inspections, 137
software integrity level, 41
software system, 3
stakeholders, 25
static analysis, 136

system testing, 151

T

technical analysis, 121
Test analysis, 139
Testing, 144
Traceability Analysis, 89
traceability matrix, 92

U

Use cases, 108

validation, 108
Verification and Validation, 3, 7

W

White box testing, 146

 Printed in the United States

